Tianshanbeilu is the largest Bronze Age site in eastern Xinjiang, China. Stretching across the entire second millennium BC, it performed a prominent role in connecting the Hexi corridor, Central China and the steppe. A further insight into the metallurgical tradition and the metal supply network is of vital importance to improve our understanding of its multi-connected nature. This paper offers a new set of chemical and isotopic data on the copper-based objects at Tianshanbeilu, including alloying elements, trace elements (impurities) and lead isotopes. Combining the concentrations of arsenic and antimony reveals that arsenic was introduced to copper partially due to the use of specific minerals tethrahedritetennantite. Lead isotopes demonstrate that multiple sources of copper were employed at Tianshanbeilu and a majority of them are characterized by common lead, which appears rather different from those of the Central Plains and the Hexi corridor, but highly consistent with local ores. Surprisingly, one object at Tianshanbeilu contains the well-known highly radiogenic lead. This object undoubtedly marks the westernmost boundary of the distribution of the highly radiogenic lead. We also anticipate that more lead isotopic analyses in NW China will further contribute to the study of the highly radiogenic lead in Central China.
Eurasian steppes experienced frequent cultural transfers, human migration, and diffusion of techniques during the Bronze Age. The Hami Oasis is one of the most dynamic areas and has attracted multiple cultural flows. It is an important area that connects various routes of the Tianshan Corridor with the Hexi Corridor in western China. The Tianshanbeilu cemetery is the largest Bronze Age cemetery in Hami. Thirty-seven new radiocarbon dates allowed us to establish a new and more accurate chronology for Tianshanbeilu. Our results showed that the Tianshanbeilu cemetery was used from approximately 2022–1802 cal BC and remained in use from 1093–707 cal BC. This indicates that Tianshanbeilu is the earliest and longest-used known cemetery in eastern Xinjiang. By incorporating the typology of artifacts and stratigraphic relationships, the development of the Tianshanbeilu cemetery was divided into four phases. The first phase was from 2011–1672 cal BC, the second phase was from 1660–1408 cal BC, the third phase was from 1385–1256 cal BC, and the fourth phase was from 1214–1029 cal BC.
The crucial role that Xinjiang played in cultural communication across the Eurasian steppe in prehistory is evidenced by the large number of copper-based objects that represent the early metallurgical technologies found across this region. Our research adds new chemical and isotopic analyses of 44 copper-based objects dated to the early Iron Age of Ili in Xinjiang, western China. As noted in a number of publications, tin bronze and arsenic copper/bronze were the dominant alloying types across Xinjiang during the second and first millennium BC, whereas some specific types of objects such as cauldrons are often made from pure copper. The western Tianshan Mountain, including the well-known mining site Nulasai, is the most likely copper source for the Ili metalworking. Meanwhile, a combination of lead isotopes, lead concentrations and trace elemental data reveals new evidence for the mixing and recycling of different sources of copper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.