Chinese painting is one of the representatives of our country’s outstanding traditional culture, and it embodies the long history and intellectual wisdom of the Chinese nation. In the paper, we combine the artistic characteristics of Chinese paintings and use an optimized SqueezeNet model to study the sentiment analysis of Chinese paintings. To make full use of the advantages of lightweight convolutional neural networks, we make two optimizations based on SqueezeNet. On the one hand, expand the model width to obtain more effective Chinese painting sentiment features for classification tasks, thereby improving the classification accuracy of the model. On the other hand, introduce the idea of residual network to prevent gradient disappearance and gradient explosion in the training process, thereby enhancing the model’s generalization ability. To verify the effectiveness of the optimized SqueezeNet model used in the sentiment analysis of Chinese paintings, four kinds of sentiment classifications were carried out on the multitheme Chinese paintings downloaded on the Internet. The results of comparative experiments show that the optimized SqueezeNet model used in this paper can improve the accuracy of classification and has better generalization ability. Finally, the research results of this paper can be applied to the protection of traditional culture, the appreciation of traditional Chinese painting, and art education and training, which is conducive to the inheritance and innovation of the national quintessence and promotes the prosperity and development of traditional art and culture.
In recent years, aesthetic education has been gradually emphasized by higher education. Colleges and universities actively apply aesthetic education in the cultivation of various professional talents, and integrate aesthetic education through courses such as ideological and political education. With a view to enhancing the aesthetic consciousness and ability of higher talents. Art education is the most important and direct way of aesthetic education. Based on this, this paper analyzes the current problems of aesthetic education in colleges and universities, and mainly uses the application of aesthetic education in art teaching as an example to explore the effective ways and methods of aesthetic education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.