This study investigates the impact of cross structures on flood occurrences in mountainous rivers. The governing equations of open channel flow were formulated based on the Saint-Venant equations. The open channel was segmented, and a node equation was established at each section’s connection point. An overflow model of bridges and weir dams was also developed. The physical model of the open channel was simplified and modeled using actual building data and model calculation requirements. The study found that the primary impact of weirs and bridges on the open channel was the backwater effect on the water level. The influence of these structures on the water level in the Huang Stream urban section in the Yellow River Basin was assessed under various working conditions. The results showed that deleting the #1 weir could reduce the maximum backwater height by 1.14 m, and deleting the #2 weir could reduce it by 1.09 m. While reducing the weir height significantly decreased the backwater range and height, it did not enhance the river’s flood discharge capacity. The Huang Stream contains 17 bridges, 13 of which could potentially affect flood discharge. The eight flat slab bridges in the submerged outflow state had a significant impact on flood discharge, with a maximum water level change of 0.51 m. Conversely, the three single-hole flat slab bridges in the free outflow state downstream had a negligible impact on flood discharge. The study found that bridges had a greater influence on flood discharge capacity than weirs. This research provides valuable insights for the reconstruction of cross structures in mountainous rivers and for managing flood discharge capacity and flood control.
The stable operation of a variable frequency pump is of great importance to the management of a water supply project. Analyzing the operation performance based on monitoring data is necessary for maintaining the stable operation of a variable frequency pump. Several sensors are installed at six monitoring points on the pump to collect signals including vibration velocity, vibration acceleration and vibration displacement. Monitoring signals are preprocessed by smoothing, adjusting waveform trend and filtering on the basis of Fast Fourier Transform (FFT). Then, the vibration features are extracted by power spectrum analysis and cepstrum analysis methods. According to the extracted features, the vibration law and actual operation performance of a variable frequency pump under different operating conditions are analyzed. Results indicate that the vibration amplitude of the pump varies sharply under the operating conditions of [15 Hz, 20 Hz] and [30 Hz, 35 Hz]. The operating condition of [0 Hz, 15 Hz] is the restricted operating area of the pump. The vibration and noise continue increasing under the operating conditions of [35 Hz, 50 Hz] and reach the maximum values at 50 Hz. Therefore, the optimal operating is within the range of [20 Hz, 30 Hz]. Finally, by analyzing the critical values of the operating conditions, the fault diagnosis and the evaluation of the operating status are conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.