Background
Bovine respiratory syncytial virus (BRSV) is a common pathogen causing respiratory disease in cattle and a significant contributor to the bovine respiratory disease (BRD) complex. BRSV is widely distributed around the world, causing severe economic losses. This study we established a new molecular detection method of BRSV pathogen NanoPCR attributed to the combination of nano-particles in traditional PCR (Polymerase chain reaction) technology.
Results
In this study, the BRSV NanoPCR assay was developed, and its specificity and sensitivity were investigated. The results showed that no cross-reactivity was observed for the NanoPCR assay for related viruses, including the infectious bovine rhinotracheitis virus (IBRV), bovine viral diarrhea virus (BVDV), and bovine parainfluenza virus type 3 (BPIV3), and the assay was more sensitive than the conventional PCR assay, with a detection limit of 1.43 × 10
2
copies recombinant plasmids per reaction, compared with 1.43 × 10
3
copies for conventional PCR analysis. Moreover, thirty-nine clinical bovine samples collected from two provinces in North-Eastern China, 46.15% were determined BRSV positive by our NanoPCR assay, compared with 23.07% for conventional PCR.
Conclusions
This is the first report to demonstrate the application of a NanoPCR assay for the detection of BRSV. The sensitive and specific NanoPCR assay developed in this study can be applied widely in clinical diagnosis and field surveillance of BRSV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.