Visible thermal person re-identification (VT Re-ID) is the task of matching pedestrian images collected by thermal and visible light cameras. The two main challenges presented by VT Re-ID are the intra-class variation between pedestrian images and the cross-modality difference between visible and thermal images. Existing works have principally focused on local representation through cross-modality feature distribution, but ignore the internal connection of the local features of pedestrian body parts. Therefore, this paper proposes a dual-path attention network model to establish the spatial dependency relationship between the local features of the pedestrian feature map and to effectively enhance the feature extraction. Meanwhile, we propose cross-modality dual-constraint loss, which adds the center and boundary constraints for each class distribution in the embedding space to promote compactness within the class and enhance the separability between classes. Our experimental results show that our proposed approach has advantages over the state-of-the-art methods on the two public datasets SYSU-MM01 and RegDB. The result for the SYSU-MM01 is Rank-1/mAP 57.74%/54.35%, and the result for the RegDB is Rank-1/mAP 76.07%/69.43%.
Much research on adversarial attacks has proved that deep neural networks have certain security vulnerabilities. Among potential attacks, black-box adversarial attacks are considered the most realistic based on the the natural hidden nature of deep neural networks. Such attacks havebecome a critical academic emphasis in the current security field. However, current black-box attack methods still have shortcomings, resulting in incomplete utilization of query information. Our research, based on the newly proposed Simulator Attack, proves the correctness and usability of feature layer information in a simulator model obtained by meta-learning for the first time. Then, we propose an optimized Simulator Attack+ based on this discovery. Our optimization methods used in Simulator Attack+ include: (1) a feature attentional boosting module that uses the feature layer information of the simulator to enhance the attack and accelerate the generation of adversarial examples; (2) a linear self-adaptive simulator-predict interval mechanism that allows the simulator model to be fully fine-tuned in the early stage of the attack and dynamically adjusts the interval for querying the black-box model; and (3) an unsupervised clustering module to provide a warm-start for targeted attacks. Results from experiments on the CIFAR-10 and CIFAR-100 datasets clearly show that Simulator Attack+ can further reduce the number of consuming queries to improve query efficiency while maintaining the attack.
Numerous researches on adversarial black-box attacks have proved that deep neural networks have certain insecurity. However, the current black-box attack methods still have shortages in incomplete utilization of query information. The newly proposed Simulator Attack based on meta-learning shows good performance in query-efficiency but still misses some hidden information. For this disadvantage, our research finds the usability of the feature layer output information in a simulator model for the first time. Then we propose an optimized Simulator Attack+ framework based on this discovery. By conducting experiments on the CIFAR-10 and CIFAR-100 datasets, results legibly show that Simulator Attack+ can further reduce the number of consuming queries to improve query-efficiency meanwhile maintaining attack effect. Our code is available at https://github.com/Rain117E/ SimulatorAttackplus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.