Introduction of exogenous DNA into mammalian cells represents a powerful approach for manipulating signal transduction. The available techniques, however, are limited by low transduction efficiency and low cell viability after transduction. Here we report a highly efficient molecular delivery technique, named nanotube spearing, based on the penetration of nickel-embedded nanotubes into cell membranes by magnetic field driving. DNA plasmids containing the enhanced green fluorescent protein (EGFP) sequence were immobilized onto the nanotubes, and subsequently speared into targeted cells. We have achieved an unprecedented high transduction efficiency in Bal17 B-lymphoma, ex vivo B cells and primary neurons with high viability after transduction. This technique may provide a powerful tool for highly efficient gene transfer into a variety of cells, especially the hard-to-transfect cells.
Rechargeable aluminum‐ion batteries have drawn considerable attention as a new energy storage system, but their applications are still significantly impeded by critical issues such as low energy density and the lack of excellent electrolytes. Herein, a high‐energy aluminum‐manganese battery is fabricated by using a Birnessite MnO2 cathode, which can be greatly optimized by a divalence manganese ions (Mn2+) electrolyte pre‐addition strategy. The battery exhibits a remarkable energy density of 620 Wh kg−1 (based on the Birnessite MnO2 material) and a capacity retention above 320 mAh g−1 for over 65 cycles, much superior to that with no Mn2+ pre‐addition. The electrochemical reactions of the battery are scrutinized by a series of analysis techniques, indicating that the Birnessite MnO2 pristine cathode is first reduced as Mn2+ to dissolve in the electrolyte upon discharge, and AlxMn(1−x)O2 is then generated upon charge, serving as a reversible cathode active material in following cycles. This work provides new opportunities for the development of high‐performance and low‐cost aqueous aluminum‐ion batteries for prospective applications.
Using lithium as the anode to achieve high energy density of lithium-ion/metal batteries is the ultimate goal of energy storage technology. Recent development of solid state electrolytes (SSEs) with high...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.