Organic synaptic memristors are of considerable interest owing to their attractive characteristics and potential applications to flexible neuromorphic electronics. In this work, an organic type-II heterojunction consisting of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) and pentacene was adopted for low-voltage and flexible memristors. The conjugated polymer PEDOT:PSS serves as the flexible resistive switching (RS) layer, while the thin pentacene layer plays the role of barrier adjustment. This heterojunction enabled the memristor device to be triggered with low-energy RS operations (V < ± 1.0 V and I < 9.0 μA), and simultaneously providing high mechanical bending stability (bending radius of ≈2.5 mm, bending times = 1,000). Various synaptic properties have been successfully mimicked. Moreover, the memristors presented good potentiation/depression stability with a low cycle-to-cycle variation (CCV) of less than 8%. The artificial neural network consisting of this flexible memristor exhibited a high accuracy of 89.0% for the learning with MNIST data sets, even after 1,000 tests of 2.5% stress-strain. This study paves the way for developing low-power and flexible synaptic devices utilizing organic heterojunctions.
Artificial synaptic devices are the cornerstone of neuromorphic electronics. The development of new artificial synaptic devices and the simulation of biological synaptic computational functions are important tasks in the field of neuromorphic electronics. Although two-terminal memristors and three-terminal synaptic transistors have exhibited significant capabilities in the artificial synapse, more stable devices and simpler integration are needed in practical applications. Combining the configuration advantages of memristors and transistors, a novel pseudo-transistor is proposed. Here, recent advances in the development of pseudo-transistor-based neuromorphic electronics in recent years are reviewed. The working mechanisms, device structures and materials of three typical pseudo-transistors, including tunneling random access memory (TRAM), memflash and memtransistor, are comprehensively discussed. Finally, the future development and challenges in this field are emphasized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.