Background: Renal cell carcinoma (RCC) is one of the most common aggressive malignant tumors in urogenital system, and the clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal carcinoma. Immune related long non-coding RNAs (IRlncRs) plentiful in immune cells and immune microenvironment (IME) are potential in evaluating prognosis and assessing the effects of immunotherapy. A completed and meaningful IRlncRs analysis based on abundant ccRCC gene samples from The Cancer Genome Atlas (TCGA) will provide insight in this field. Methods: Based on the TCGA dataset, we integrated the expression profiles of IRlncRs and overall survival (OS) in the 611 ccRCC patients. The immune score of each sample was calculated based on the expression level of immunerelated genes and used to identify the most meaningful IRlncRs. Survival-related IRlncRs (sIRlncRs) was estimated by calculating the algorithm of difference and COX regression analysis in ccRCC patients. Based on the median immune-related risk score (IRRS) developed from the screened sIRlncRs, the high-risk and low-risk components were distinguished. Functional annotation was detected by gene set enrichment analysis (GSEA) and principal component analysis (PCA), and the immune composition and purity of the tumor was evaluated by microenvironment cell population records. The expression levels of three sIRlncRs were verified in various tissues and cell lines. Results: A total of 39 IRlncRs were collected by Pearson correlation analyses among immune score and the lncRNA expression. A total of 7 sIRlncRs were significantly associated with the clinical outcomes of ccRCC patients. Three sIRl-ncRs (ATP1A1-AS1, IL10RB-DT and MELTF-AS1) with the most significant prognostic values were enrolled to build the IRRS model in which the OS of in the high-risk group was shorter than that in the low-risk group. The IRRS was identified as an independent prognosis factor and correlated with the OS. The high-risk group and low-risk group illustrated different distributions in PCA and different immune status in GSEA. Besides, we found the more significant expression in certain ccRCC cell lines and tumor tissues of ccRCC patients compared with the HK-2 and adjacent tissues respectively. Additionally, the expression levels of lncR-MELTF-AS1 and IL10RB-DT were remarkably enhanced along the more advanced T-stages, but the lncR-ATP1A1-AS1 showed the inverse gradient.
Long non-coding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) to exert significant roles in regulating the expression of mRNAs by sequestering and binding miRNAs. To elucidate the functional roles and regulatory mechanism of lncRNAs in papillary renal cell cancer (pRCC), we conducted a comprehensive analysis of ceRNA network and constructed a mRNA signature to predict prognosis of pRCC. We collected mRNAs and lncRNAs expression profiles of 289 pRCC samples and 32 normal renal tissues, and miRNA expression profiles of 292 pRCC samples and 34 normal samples from The Cancer Genome Atlas (TCGA) database. Differential expressions of RNAs were evaluated by the “edgeR” package in R. Functional enrichment analysis of DEmRNA was performed by DAVID 6.8 and KEGG, while PPI network of top 200 DEmRNAs was conducted using the STRING database. The univariate and multivariate Cox regression were conducted to figure out the candidate DEmRNAs with predictive values in prognosis. Receiver operator characteristic (ROC) curve estimation was performed to achieve the area under the curve (AUC) of the ROC curve to judge mRNA-associated prognosic model. A ceRNA network was established relying on the basis of combination of lncRNA-miRNA interactions and miRNA-mRNA interactions. A total of 1928 DEmRNAs, 981 DElncRNAs, and 52 DEmiRNAs were identified at significance level of |log 2 Fold Change |>2 and adjusted P -value < .01. A 3-mRNA signatures consisting of ERG, RRM2, and EGF was constructed to predict survival in pRCC. Moreover, a pRCC-associated ceRNA network was constructed, with 57 lncRNAs, 11 miRNAs, and 28 mRNAs. Our study illustrated the regulatory mechanism of ceRNA network in papillary renal cancer. The identified mRNA signatures could be used to predict survival of pRCC.
Background: The prevalence of primary aldosteronism concurrent with subclinical Cushing's syndrome was higher than previously thought. Through analyzing a rare clinical case, we summarized the diagnosis and management of primary aldosteronism with subclinical Cushing's syndrome. Case presentation: A 54-year-old Chinese man of Han nationality was diagnosed as having primary aldosteronism with subclinical Cushing's syndrome. An abdominal computed tomography scan revealed a mass in his left adrenal gland and a mass in his right adrenal gland. After finishing sequential adrenal venous sampling without adrenocorticotropic hormone, the result reminded us that the left and right nodules were responsible for hypercortisolism and aldosterone hypersecretion, respectively. Right and left adrenalectomy were performed successively. The pathological diagnosis was adrenocortical adenoma for both. Histological findings revealed that the right one had positive immunostaining for CYP11B2 and the left one had positive immunostaining for CYP11B1. The immunohistochemistry result helped us to confirm the diagnosis. Somatic KCNJ5 mutation (Leu168Arg) was found in the right tumor; there was no KCNJ5 mutation in the left adrenal tumor. Conclusions: We suggest that patients with primary aldosteronism should have a low-dose overnight dexamethasone suppression test to screen for hypercortisolism. It can help avoid misdiagnoses and contribute to proper understanding of the adrenal vein sampling result. Making sure of the nidus of aldosterone and cortisol secretion is crucial for the therapy of patients with primary aldosteronism and subclinical Cushing's syndrome.
Background Depression and sarcopenia are common diseases in the elderly population. However, the association between them is controversial. Based on the Chinese Longitudinal Healthy Longevity Survey (CLHLS) database, a cross-sectional study was conducted to explore the relationship of calf circumference and physical performance with depression. Methods From the 8th wave of CLHLS conducted in 2018, data on calf circumference, physical performance, depressive symptoms, and demographic, socioeconomic, and health-related characteristics were collected. Multiple logistic regression was conducted to explore the impact of calf circumference, physical performance and their combination on depressive symptoms. Results We enrolled a total of 12,227 participants aged 83.4 ± 11.0 years, including 5689 (46.5%) men and 6538 (53.5%) women. Patients with depression were more likely to have low calf circumference (2274 [68.2%] vs. 5406 [60.8%], p<0.001) and poor physical performance (3[0, 6] vs. 1[0, 4], p<0.001). A significant multiplicative interaction was found between calf circumference and physical performance in their effect on depression. After adjusting for confounding factors, multiple logistic regression showed that a significant inverse correlation persisted between physical performance and depressive symptoms in normal (odds ratio [OR] = 1.20, 95% confidence interval [CI]: 1.15–1.26, p<0.001) and low (OR = 1.14, 95% CI: 1.11–1.18, p<0.001) calf circumference group, while the association between calf circumference and depression disappeared. Participants with low calf circumference and poor physical performance were 2.21 times more likely to have depression than those with normal calf circumference and physical performance. All results were found to be robust in sensitivity analyses. Conclusions Physical performance was significantly associated with depression in the elderly Chinese population. Attention should be paid to assess depressive symptoms in patients with poor physical performance.
Background: Depression and sarcopenia are common diseases in the elderly population. However, the association between them is controversial. Based on the Chinese Longitudinal Healthy Longevity Survey (CLHLS) database, a cross-sectional study was conducted to explore the relationship between calf circumference, physical performance, and depression.Methods: From the 8th wave of CLHLS conducted in 2018, data on calf circumference, physical performance, depressive symptoms, and demographic, socioeconomic, and health-related characteristics were collected. A statistical analysis was conducted to explore the relationship between calf circumference, physical performance, and depressive symptoms. Confounding factors were adjusted for in the multiple logistic regression analysis.Results: A total of 12,227 participants, including 5689 (46.5%) men and 6538 (53.5%) women (mean age, 83.4 years), were included in this study. After adjusting for confounding factors, the association between calf circumference and depression disappeared (odds ratio [OR] = 1.04, 95% confidence interval [CI]: 0.92–1.17, p = 0.58). However, a significant inverse correlation persisted between physical performance and depressive symptoms (OR = 1.16, 95% CI: 1.13–1.20, p<0.001). The subgroup analysis revealed a significant association of calf circumference (OR = 1.3, 95% CI: 1.04–1.62, p = 0.02) and physical performance (OR = 1.15, 95% CI: 1.08–1.22, p < 0.001) with depression in the regular exercise group.Conclusions: Physical performance was significantly associated with depression in the elderly Chinese population. Attention should be paid to assess depressive symptoms in patients with poor muscle condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.