Defective mitophagy linked to dysfunction in the proteins Parkin and PTEN-induced putative kinase 1 (PINK1) is implicated in the pathogenesis of Parkinson's disease. Although the mechanism by which Parkin mediates mitophagy in a PINK1-dependent manner is becoming clearer, the triggers for this mitophagy pathway remain elusive. Reactive oxygen species (ROS) have been suggested as such triggers, but this proposal remains controversial because ROS scavengers fail to retard mitophagy. Here we demonstrate that the role of ROS in mitophagy has been underappreciated as a result of the inefficiency of ROS scavengers to control ROS bursts after high-dose treatment with carbonyl cyanide -chlorophenylhydrazone. Supporting this, combinatorial treatment with-acetyl-l-cysteine and catalase substantially inhibited the ROS upsurge and PINK1-dependent Parkin translocation to mitochondria in response to carbonyl cyanide -chlorophenylhydrazone treatment. In addition to the chemical mitophagy inducer, overexpression of voltage-dependent anion channel 1 (VDAC1) induced Parkin translocation to mitochondria, presumably by stimulating ROS generation. Similarly, combined-acetyl-l-cysteine and catalase treatment also suppressed VDAC1-induced redistribution of Parkin. Alongside these observations, we also found that the elevated protein level of PINK1 was not necessary for Parkin translocation to mitochondria. Thus, our data suggest that ROS may act as a trigger for the induction of Parkin/PINK1-dependent mitophagy. In addition, our study casts doubt on the importance of protein quantity of PINK1 in the recruitment of Parkin to mitochondria.
L755S, a HER2 kinase domain mutation, is the most common HER2 mutation in breast cancer associated with resistance to anti-HER2 trastuzumab treatment. Here, we showed that HER2-L755S confers hyperactivation of MAPK and PI3K/AKT/mTOR pathways and resistance to both reversible and irreversible HER2 tyrosine kinase inhibitors. We further demonstrated that the HER2 TKIs in combination with MEK inhibitor, AZD6244, or PI3K inhibitor, GDC0941, yield robust killing in HER2-L755S cancer cells, indicating a novel targeted strategy to overcome HER2-L755S resistance to anti-HER2 treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.