To overcome the detrimental effect of residual stress in welded joints, which affects the overall performance of the welded structure, this paper studies the magnitude and distribution of residual stress after welding and local post-weld heat treatment (PWHT). The coupled thermo-metallurgical-mechanical model for welding 6 mm thick Ti-6Al-4V (TC4) titanium alloy plates was established, the evolution of the SSPT and its effect on the residual stress were quantitatively analyzed, and a parametric analysis of local PWHT was performed. The results demonstrated that there was good agreement between the numerical results and the experimental data. Due to the cooling rate reaching 327 °C/s, the volume fraction of α、 in the fusion zone (FZ) reached 0.218 after welding and decreased by 90.83% after PWHT when the heating temperature was 700 °C. The peak value of the longitudinal residual stress can reach 686.4 MPa after welding with SSPT, which was 11.38% lower than that without SSPT, and it decreased by 65.6% after PWHT when the heating temperature was 900 °C. The research results demonstrate that SSPT has a significant effect on residual stress, and PWHT can obviously reduce the residual stress, which provides a certain reference for welding TC4 titanium alloy plates.
The actual driving conditions of electric vehicles (EVs) are complex and changeable. Limited by road adhesion conditions, it is necessary to give priority to ensuring safety, taking into account the energy recovery ratio of the vehicle during braking to obtain better braking quality. In this work, an electric vehicle with an EHB (electro-hydraulic braking) system whose braking force adaptive distribution control strategy is studied. Firstly, the vehicle dynamics model, including seven degrees of freedom, tire, drive motor, main reducer, battery pack, and braking system, was constructed, which is attributed to the vehicle configuration and braking system scheme. Second, based on curve I and ECE regulations, the adaptive braking force distribution control strategy was formulated by taking the maximum regenerative braking torque as the inflection point, the synchronous adhesion coefficient as the desired point, and the battery SOC, road adhesion coefficient, and braking strength as the threshold. Finally, the vehicle dynamics simulation model was built on the Matlab/Simulink platform, and the simulation results verified the feasibility of the proposed braking force adaptive allocation control strategy. The research shows that the adaptive distribution control strategy can better adapt to the complex and variable driving conditions of the vehicle by combining the inflection point and the desired point. The braking energy recovery ratios of the vehicle under the NEDC and NYCC cycle conditions on a high adhesion road are 52.62% and 47.45%. The braking force distribution curve is close to curve I under the low adhesion extreme road.
In order to improve the stress state of the metal sheet of the continuously variable transmission (CVT) under high-speed conditions and prolong its wear life, it is proposed to replace the bearing steel material of the metal sheet in the CVT with magnesium alloy material. Based on the wear depth of side surface on the metal sheet, the improved wear life prediction model of the metal sheet is derived, so that the service life of the metal sheet can be more clearly represented by the total mileage of the electric vehicle. The three-dimensional finite element model (FEM) of the CVT is established and validated through experiments. The results obtained from simulation and experiment analysis show that: The deformation of the pulley obtained by simulation are in good agreement with the experimental data. After the magnesium alloy material is applied to the metal sheet, the stress state of metal sheet can be effectively improved under high-speed condition, especially at low speed ratio, and the peak stress of magnesium alloy metal sheet is significantly lower than that of existing bearing steel metal sheet. In addition, the deviation between the total mileage of electric vehicles equipped with magnesium alloy metal sheet and that of electric vehicles equipped with bearing steel metal sheet is only 5.65%. The research results can provides a certain reference for the application of magnesium alloy material on CVT metal belt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.