Cryptography is crucial to communication security. In 1984, a well-known QKD (quantum key distribution) protocol, BB84, was published by Bennett and Brassard. The BB84 Protocol was followed by the QKD protocols published by Ekert (1991) (E91) and Bennett (1992) (B92). Some authors proved security of the theoretical QKD protocols in different theoretical frameworks by defining security of QKD protocols differently. My argument is that the previous proofs of security are neither unique nor exhaustive for each theoretical QKD protocol, which means that proof of security of the theoretical QKD protocols has not been completed or achieved. The non-uniqueness and the non-exhaustiveness of the proofs will lead to more proofs. However, a coming "proof" of security of the theoretical QKD protocols is possible to be a disproof. The research by quantum mechanics in this paper disproves security of the theoretical QKD protocols, by establishing the theoretical framework of quantum mechanical proof, defining security of QKD protocols, establishing the quantum state of the final key of the theoretical protocols from their information leakages, and applying Grover's fast quantum mechanical algorithm for database search to the quantum state of the final key to result in the Insecurity Theorem. This result is opposite to those of the previous proofs where the theoretical QKD protocols were secure. It is impossible for Alice and Bob to protect their communications from information leakage by stopping or canceling the protocols. The theoretical QKD keys are conventional and basically insecure. Disproof of security of the theoretical QKD protocols is logical.
The existing quantum cryptography is a classical cryptography in nature and basically insecure because of its classical (conventional) bits, classical encryption algorithm and classical (public) channel. A novel topic about successful communication between the legitimate users, Alice and Bob, is discussed with probability of solution uniqueness of Bob's decryption equation. We find, by probabilistic analysis, that success of communication between Alice and Bob is probabilistic with a probability bigger than 1/2. It is also novel to define insecurity of the quantum cryptography by probability of solution uniqueness of the search equation of Eve, the eavesdropper. The probability of Eve's success to find the plain-text of Alice (and Bob) is greater than 1/2, and so the quantum cryptography is seriously insecure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.