A novel method for performing anatomical (MRI)-functional (PET or SPECT) image fusion is presented. The method merges specific feature information from input image signals of a single or multiple medical imaging modalities into a single fused image while preserving more information and generating less distortion. The proposed method uses a local Laplacian filtering based technique realized through a novel multi-scale system architecture. Firstly, the input images are generated in a multi-scale image representation and are processed using local Laplacian filtering. Secondly, at each scale, the decomposed images are combined to produce fused approximate images using a local energy maximum scheme and produce the fused residual images using an information of interest-based scheme. Finally, a fused image is obtained using a reconstruction process that is analogous to that of conventional Laplacian pyramid transform. Experimental results computed using individual multi-scale analysis-based decomposition schemes or fusion rules clearly demonstrate the superiority of the proposed method through subjective observation as well as objective metrics. Furthermore, the proposed method can obtain better performance, compared to the state-of-the-art fusion methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.