Abstract:The Yarlung Zangbo River Basin (YZRB) is an important transboundary river basin in Tibet, China with south Asian countries. Changes in precipitation are important driving factors of river flow changes. Extreme Precipitation Events (EPE), in particular, have serious impacts on human life and sustainable development. The objective of this study is to explore the temporal changes and the spatial distribution of EPE over the YZRB in recent decades using a precipitation product with a 5 km spatial resolution and the Mann-Kendall nonparametric statistical test method. A more thorough understanding of the spatial heterogeneity in precipitation was expected from using this high resolution dataset. At both basin and pixel scale, both annual precipitation amounts and number of rain days had significant upward trends, indicating that the increase in the number of rain days is one possible cause of the annual precipitation amounts increases. The annual precipitation and number of rain days increased significantly in 50.8% and 75.8% of the basin area, respectively. The areas showing upward trends for the two indexes mostly overlapped, supporting the hypothesis that the increasing number of rain days is one possible cause of the increases in annual precipitation in these areas. General precipitation intensity and EPE intensity increased in the Lhasa regions and in the southern part of the lower-reach region. However, the intensity of general precipitation and EPE decreased in the Nyangqu River Basin. A total of 43.0% of the area in the YZRB exhibits significant upward trends in EPE frequency. The contributions of EPE to total rainfall increase significantly in the Lhasa and Shannan regions. Overall, it was shown that the risk of disasters from EPE in the YZRB increases in the eastern middle-reach region and southern lower-reach region.
The dynamic emissivity retrieved from window channels of the microwave humidity sounder II (MWHS-2) onboard the China Meteorological Administration’s FengYun (FY)-3C polar orbiting satellite can provide more realistic emissivity over lands and potentially improve the numerical weather prediction (NWP) forecasts. However, whether the assimilation with the dynamic emissivity works for the precipitation forecasts over the complex geography is less investigated. In this paper, a typical precipitating case generated by the Southwest Vortex is selected and the Weather Research and Forecasting data assimilation (WRFDA) system is applied to examine the impacts of assimilating MWHS-2/FY-3C with the uses of the emissivity atlas and the dynamic emissivity on the forecasts. The results indicate that the use of the dynamic emissivity retrieved from the 89 GHz channel of MWHS-2/FY-3C apparently increases the used data number for assimilation and does improve the initial fields and the 24-hour forecasts (from 0000 UTC 24 June 2016 to 0000 UTC 25 June 2016) of precipitation distribution and intensity except for the rainfall over 100 mm. But these positive impacts are not evidently better than those with the emissivity atlas. In general, these results still suggest that the future use of the dynamic emissivity in the assimilation over the complex terrain is promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.