The Walker and Syers model of phosphorus (P) transformations during long‐term soil development has been verified along many chronosequences but has rarely been examined along climosequences, particularly in arid regions. We hypothesized that decreasing aridity would have similar effects on soil P transformations as time by increasing the rate of pedogenesis. To assess this, we examined P fractions in arid and semiarid grassland soils (0‐10 cm) along a 3700 km aridity gradient in northern China (aridity between 0.43 and 0.97, calculated as 1 − [mean annual precipitation/potential evapotranspiration]). Primary mineral P declined as aridity decreased, although it still accounted for about 30% of the total P in the wettest sites. In contrast, the proportions of organic and occluded P increased as aridity decreased. These changes in soil P composition occurred in parallel with marked shifts in soil nutrient stoichiometry, with organic carbon:organic P and nitrogen:organic P ratios increasing with decreasing aridity. These results indicate increasing abundance of P relative to carbon or nitrogen along the climosequence. Overall, our results indicate a broad shift from abiotic to biotic control on P cycling at an aridity value of approximately 0.7 (corresponding to about 250 mm mean annual rainfall). We conclude that the Walker and Syers model can be extended to climosequences in arid and semiarid ecosystems and that the apparent decoupling of nutrient cycles in arid soils is a consequence of their pedogenic immaturity.
Drylands are characterized by stressful conditions with the limitation of both carbon (C) and nutrients, particularly nitrogen (N) and phosphorus (P). Biological C, N, and P releases from soil organic matter by enzymes are essential components for biogeochemical cycles and are sensitive to the climate in drylands. However, how the ecoenzymatic C:N:P stoichiometry responds to environmental factors (i.e., climatic and edaphic factors) over broad geographical scales remains largely unclear. We examined the patterns of ecoenzymatic C:N:P ratios across a 3,700‐km aridity gradient (0.43 < aridity < 0.97) in northern China. In wetter sites (aridity < 0.70), the relative C:N:P acquisition ratios via enzymes remained relatively constant with increasing aridity. In contrast, in drier sites (aridity > 0.70), the enzymatic C:nutrient (N and P) ratios declined as the aridity increased, while the enzymatic P:N ratios were mostly lower than those in the wetter sites. In drier sites with low C availability, the increasing carbon use efficiency and the increasing proportion of C converted to biomass (than the proportion of respiration) contributed to the declines of the enzymatic C:nutrient ratios as the aridity increased. The overall lower enzymatic P:N ratios were related to the higher soil P availability compared with N availability (higher organic P and lower soil NH4+:available P ratios) in drier sites. Overall, our findings indicate that intrinsic linkages of biological C, N, and P acquisitions and cycles were broken at the aridity threshold of 0.70, with higher acquisition efforts for N and P (particularly for N) with increasing aridity in drier sites with aridity > 0.70.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.