Optical quantum memory is an essential element for long distance quantum communication and photonic quantum computation protocols. The practical implementation of such protocols requires an efficient quantum memory with long coherence time. Beating the no-cloning limit, for example, requires efficiencies above 50%. An ideal optical fibre loop has a loss of 50% in 100 µs, and until now no universal quantum memory has beaten this time-efficiency limit. Here, we report results of a gradient echo memory (GEM) experiment in a cold atomic ensemble with a 1/e coherence time up to 1 ms and maximum efficiency up to 87 ± 2% for short storage times. Our experimental data demonstrates greater than 50% efficiency for storage times up to 0.6 ms. Quantum storage ability is verified beyond the ideal fibre limit using heterodyne tomography of small coherent states.
Nonlocal correlations, a longstanding foundational topic in quantum information, have recently found application as a resource for cryptographic tasks where not all devices are trusted, for example, in settings with a highly secure central hub, such as a bank or government department, and less secure satellite stations, which are inherently more vulnerable to hardware "hacking" attacks. The asymmetric phenomena of Einstein-Podolsky-Rosen (EPR) steering plays a key role in one-sided device-independent (1sDI) quantum key distribution (QKD) protocols. In the context of continuous-variable (CV) QKD schemes utilizing Gaussian states and measurements, we identify all protocols that can be 1sDI and their maximum loss tolerance. Surprisingly, this includes a protocol that uses only coherent states. We also establish a direct link between the relevant EPR steering inequality and the secret key rate, further strengthening the relationship between these asymmetric notions of nonlocality and device independence. We experimentally implement both entanglement-based and coherent-state protocols, and measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 7.5 and 3.5 km of optical fiber transmission, respectively. We also engage in detailed modeling to understand the limits of our current experiment and the potential for further improvements. The new protocols we uncover apply the cheap and efficient hardware of CV-QKD systems in a significantly more secure setting.
Quantum memories are an integral component of quantum repeaters-devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs to be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a 87 Rb magneto-optical trap with a peak optical depth of 1000 for the D2 F = 2 → F = 3 transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble we implemented the gradient echo memory (GEM) scheme on the D1 line. Our data shows a memory efficiency of 80 ± 2% and coherence times up to 195 µs, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.