It is important and difficult for the complicated surface processing in mechanical industry. In this paper, an improved algorithm for trajectory planning is proposed in impeller surface processing by using 6-DOF cutting-robot. Taking a single finished path of the impeller blade as an example, the feedrate of the cutter, bow height error, cutter-orientation and position are planned by the B-spline interpolation algorithm, the best cutting trajectory is obtained. On the basis of trajectory planning, the optimal movement scheme of 6-DOF cutting-robot joints is obtained, the 6-DOF cutting-robot feedrate and trajectory smooth transition is achieved and the joints movement adaptive adjustment is completed. Finally, the angles, the angular velocitys of the joints and their interrelated properties are analyzed. The research works indicate that the robot joint angle curves are continuous and stable, which has met the requirements of smooth movement of the robot, and the results show that the trajectory planning is effective and practical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.