The study was conducted by means of nutrient solution culture to investigate the effects of exogenous nitric oxide (NO) on growth of cucumber seedlings, active oxygen species metabolism and photosynthetic characteristics in cucumber leaves under 50 mmol/L NaCl stress. The results showed that 10-400 µmol/L exogenous sodium nitroprusside (SNP), especially 100 µmol/L SNP, significantly alleviated the injury to seedlings and increased seedling growth. The activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and the contents of photosynthetic pigments and proline also increased under 50 mmol/L NaCl stress. Similarly, net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) also increased significantly. However, exogenous nitric oxide application markedly decreased membrane permeability, rate of O 2 · − production, the contents of malondialdehyde (MDA) and H 2 O 2 , and intercellular CO 2 concentration (Ci) under 50 mmol/L NaCl stress.
Stress is considered to be the inducer of microspore embyogenesis (ME), and heat stress is indispensible in the ME of sweet pepper. The aim of the study was to explore differentially expressed genes of microspore embryogenesis under heat stress in sweet pepper. The swollen rate of microspore was significantly affected by heat stress, while no green plant could be acquired without heat pretreatment. Anthers with or without heat stress were used for whole transcriptome analysis by RNA sequencing to provide new insights on how cells adapt to stress. A total of 5031 differentially expressed genes were identified, among which 2657 differentially expressed genes were up-regulated and 2374 differentially expressed genes were down-regulated in the early stage of heat stress. KEGG pathway analysis identified "plant hormone signal transduction" (67; 11.20%), followed by starch and sucrose metabolism (63; 10.54%). RNA-Seq data and quantitative real-time polymerase chain reaction showed that 224 genes related to glutathione metabolism, starch and sucrose metabolism, plant hormone signal transduction and phenylpropanoid biosynthesis were the most likely specific genes in ME under heat stress. This research provides new insights into molecular regulation during the early stage of ME in sweet pepper under heat stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.