The 70kD heat shock proteins (Hsp70s) are ubiquitous molecular chaperones essential for cellular protein folding and proteostasis. Each Hsp70 has two functional domains: a nucleotide-binding domain (NBD) that binds and hydrolyzes ATP, and a substrate-binding domain (SBD) that binds extended polypeptides. NBD and SBD interact little when in ADP; however, ATP binding allosterically couples the polypeptide- and ATP-binding sites. ATP binding promotes polypeptide release; polypeptide rebinding stimulates ATP hydrolysis. This allosteric coupling is poorly understood. Here we present the crystal structure of an intact Hsp70 from Escherichia coli in an ATP-bound state at 1.96 Å resolution. NBD-ATP adopts a unique conformation, forming extensive interfaces with a radically changed SBD that has its α-helical lid displaced and the polypeptide-binding channel of its β-subdomain restructured. These conformational changes together with our biochemical tests provide a long-sought structural explanation for allosteric coupling in Hsp70 activity.
Graphical AbstractHighlights d Ligand-receptor interactions in tumors were investigated using single-cell RNA-seq d Identified interactions were regressed against phenotypic measurements of tumors d The approach provides a tool for studying cell-cell interactions and their variability In BriefTumors are composed of cancer cells and many non-malignant cell types, such as immune and stromal cells. To better understand how all cell types in a tumor cooperate to facilitate malignant growth, Kumar et al. studied communication between cells via ligand and receptor interactions using single-cell data and computational modeling. SUMMARYTumor ecosystems are composed of multiple cell types that communicate by ligand-receptor interactions. Targeting ligand-receptor interactions (for instance, with immune checkpoint inhibitors) can provide significant benefits for patients. However, our knowledge of which interactions occur in a tumor and how these interactions affect outcome is still limited. We present an approach to characterize communication by ligand-receptor interactions across all cell types in a microenvironment using single-cell RNA sequencing. We apply this approach to identify and compare the ligand-receptor interactions present in six syngeneic mouse tumor models. To identify interactions potentially associated with outcome, we regress interactions against phenotypic measurements of tumor growth rate. In addition, we quantify ligand-receptor interactions between T cell subsets and their relation to immune infiltration using a publicly available human melanoma dataset. Overall, this approach provides a tool for studying cell-cell interactions, their variability across tumors, and their relationship to outcome.We thank Merrimack Pharmaceuticals, Inc. for sponsoring the research and supporting publication of the results and the internal review team for reviewing the article prior to submission. We also acknowledge the NIGMS Interdisciplinary Biotechnology Training Program (T32-GM008334) and NCI (U01-CA215798) for funding (to M.P.K. and D.A.L.). K. performed all computational analyses. J.D. and Y.J. processed the mouse syngeneic tumor samples, performed the flow cytometry analysis, and obtained the scRNA-seq data. A.S. provided the tumor growth data. M.P.K., A.R., and G.L. helped design the computational analysis. D.C.
BiP, an essential and ubiquitous Hsp70 chaperone in the endoplasmic reticulum, plays a key role in protein folding and quality control. BiP contains two functional domains: a nucleotide binding domain (NBD) and a substrate-binding domain (SBD). NBD binds and hydrolyzes ATP; the substrates for SBD are extended polypeptides. ATP binding allosterically accelerates polypeptide binding and release. Although crucial to the chaperone activity, the molecular mechanisms of polypeptide binding and allosteric coupling of BiP are poorly understood. Here we present crystal structures of an intact human BiP in the ATP-bound state, the first intact eukaryotic Hsp70 structure, and isolated BiP SBD with a peptide substrate bound representing the ADP-bound state. These structures and our biochemical analysis demonstrate that BiP has a unique NBD-SBD interface that is highly conserved only in eukaryotic Hsp70s found in the cytosol and ER to fortify its ATP-bound state to promote the opening of its polypeptide-binding pocket.
bBemisia tabaci (Hemiptera: Aleyrodidae) is a species complex containing >28 cryptic species, some of which are important crop pests worldwide. Like many other sap-sucking insects, whiteflies harbor an obligatory symbiont, "Candidatus Portiera aleyrodidarum," and a number of secondary symbionts. So far, six genera of secondary symbionts have been identified in B. tabaci. In this study, we report and describe the finding of an additional bacterium in the indigenous B. tabaci cryptic species China 1 (formerly known as B. tabaci biotype ZHJ3). Phylogenetic analysis based on the 16S rRNA and gltA genes showed that the bacterium belongs to the Alphaproteobacteria subdivision of the Proteobacteria and has a close relationship with human pathogens of the genus Orientia. Consequently, we temporarily named it Orientia-like organism (OLO). OLO was found in six of eight wild populations of B. tabaci China 1, with the infection rate ranging from 46.2% to 76.8%. Fluorescence in situ hybridization (FISH) of B. tabaci China 1 in nymphs and adults revealed that OLOs are confined to the bacteriome and co-occur with "Ca. Portiera aleyrodidarum." The vertical transmission of OLO was demonstrated by detection of OLO at the anterior pole end of the oocytes through FISH. Quantitative PCR analysis of population dynamics suggested a complex interaction between "Ca. Portiera aleyrodidarum" and OLO. Based on these results, we propose "Candidatus Hemipteriphilus asiaticus" for the classification of this symbiont from B. tabaci.
Background: Ubiquitous and conserved Hsp70 heat shock proteins play key roles in protein folding. Results: DnaK, a model Hsp70, forms a specific dimer, and mutations on the dimer interfaces compromise both chaperone activity and Hsp40 interaction. Conclusion: Dimerization of DnaK is required for the efficient interaction with Hsp40. Significance: Our studies shed light on the molecular mechanism of the Hsp70 chaperone machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.