Background: Metabolic factors in the kynurenine pathway (KP) have been widely accepted as being a major mechanism in Major Depressive Disorder (MDD). However, the effects of these metabolites on the degree and pattern of MDD are still poorly understood, partly due to the elusiveness of the level of metabolites when diagnosing depression. This study aimed to explore a novel diagnostic method analyzing peripheral blood with mass spectrometry to assess metabolites from KP in patients with MDD and Bipolar Depression (BD).Methods: Thirty-three patients with MDD, 20 patients with BD, and 23 healthy control participants were enrolled Metabolic factors of KP from plasma including tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), and quinolinic acid (QUIN) were analyzed by UPLC-3Q-MS, and levels compared across three groups. Correlation between HAMD scores and metabolite levels conducted. Receiver operating characteristic (ROC) curve was used to determine the diagnostic value of metabolic factors in MDD.Results: Levels of KYNA, QUIN, KYNA/QUIN, and KYNA/KYN were statistically different across the three groups (P < 0.05); HAMD scores and TRP, KYN, KYNA/QUIN levels were negatively correlated in the MDD group (r = −0.633, −0.477, −0.418, P < 0.05); Accuracy of KYNA diagnosing MDD was 82.5% with the optimal diagnostic value being 15.48 ng/ml. Diagnostic accuracy was increased to 83.6% when KYNA and QUIN levels were used in combination.Conclusion: This results indicate that metabolic factors of KP play a crucial role in the occurrence and development of MDD, supporting the metabolic imbalance hypothesis of MDD. Furthermore, our study also provides a new diagnostic method to study MDD based on plasma KYNA level, and suggests that KYNA would be a potential biomarker in diagnosing depression patients.
Mass spectrometry has been applied to the targeted analysis of commonly used additives (such as Irganox 1010, Irganox 1076, Irgafos 168 etc.) in plastic materials, but a fast and straightforward method for the non-targeted identification and quantification of unusual or potentially new antioxidant additives is still unavailable. In this study, a novel and simple method for the identification and quantification of unknown antioxidant additives in plastic food packaging using ultrasonic extraction and ultra-performance liquid chromatography , r 2 > 0.99). The accuracy of the method has been tested by relative recovery experiments with spiked samples, with results ranging from 94.3% to 104.8%, and the precision (relative standard deviation) was within 11.0% (n = 3).Finally, the method has been successfully applied to the determination of antioxidants in several real plastic samples.
It is difficult to identify unknown impurities in nucleotide analogues by mass spectrometry because mass-spectrometry-incompatible mobile phases need to be used to separate the major ingredient from impurities. In this study, vidarabine monophosphate was selected, and unknown impurities were identified by online heart-cutting two-dimensional high-performance liquid chromatography and linear ion trap mass spectrometry. The one-dimensional reversed-phase column was filled with a mobile phase containing nonvolatile salt. In two-dimensional high-performance liquid chromatography, we used an Acclaim Q1 column with volatile salt, and the detection wavelength was 260 nm. The mass spectrum was scanned in positive- and negative-ion mode. The online heart-cutting and online demineralization technique ensured that the mobile phase was compatible with mass spectrometry; seven impurities were identified by MS and MS fragments. The mass fragmentation patterns of these impurities were investigated. The two isomers were semiprepared and complemented by nuclear magnetic resonance. The results were further compared with those of normal-phase high-performance liquid chromatography with mass spectrometry. The online heart-cutting two-dimensional high-performance liquid chromatography with mass spectrometry was superior in identifying more impurities. The method solves the problem of incompatibility between the mobile phase and mass spectrometry, so it is suitable for identifying unknown impurities. This method may also be used for investigating impurities in other nucleotide analogues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.