Regulated necrosis (necroptosis) and apoptosis are crucially involved in severe cardiac pathological conditions, including myocardial infarction, ischemia-reperfusion injury and heart failure. Whereas apoptotic signaling is well defined, the mechanisms that underlie cardiomyocyte necroptosis remain elusive. Here we show that receptor-interacting protein 3 (RIP3) triggers myocardial necroptosis, in addition to apoptosis and inflammation, through activation of Ca(2+)-calmodulin-dependent protein kinase (CaMKII) rather than through the well-established RIP3 partners RIP1 and MLKL. In mice, RIP3 deficiency or CaMKII inhibition ameliorates myocardial necroptosis and heart failure induced by ischemia-reperfusion or by doxorubicin treatment. RIP3-induced activation of CaMKII, via phosphorylation or oxidation or both, triggers opening of the mitochondrial permeability transition pore and myocardial necroptosis. These findings identify CaMKII as a new RIP3 substrate and delineate a RIP3-CaMKII-mPTP myocardial necroptosis pathway, a promising target for the treatment of ischemia- and oxidative stress-induced myocardial damage and heart failure.
Background-Ischemic heart disease is the greatest cause of death in Western countries. The deleterious effects of cardiac ischemia are ameliorated by ischemic preconditioning (IPC), in which transient ischemia protects against subsequent severe ischemia/reperfusion injury. IPC activates multiple signaling pathways, including the reperfusion injury salvage kinase pathway (mainly PI3K-Akt-glycogen synthase kinase-3 [GSK3] and ERK1/2) and the survivor activating factor enhancement pathway involving activation of the JAK-STAT3 axis. Nevertheless, the fundamental mechanism underlying IPC is poorly understood. Methods and Results-In the present study, we define MG53, a muscle-specific TRIM-family protein, as a crucial component of cardiac IPC machinery. Ischemia/reperfusion or hypoxia/oxidative stress applied to perfused mouse hearts or neonatal rat cardiomyocytes, respectively, causes downregulation of MG53, and IPC can prevent ischemia/ reperfusion-induced decrease in MG53 expression. MG53 deficiency increases myocardial vulnerability to ischemia/ reperfusion injury and abolishes IPC protection. Overexpression of MG53 attenuates whereas knockdown of MG53 enhances hypoxia-and H 2 O 2 -induced cardiomyocyte death. The cardiac protective effects of MG53 are attributable to MG53-dependent interaction of caveolin-3 with phosphatidylinositol 3 kinase and subsequent activation of the reperfusion injury salvage kinase pathway without altering the survivor activating factor enhancement pathway. Conclusions-These results establish MG53 as a primary component of the cardiac IPC response, thus identifying a potentially important novel therapeutic target for the treatment of ischemic heart disease. (Circulation. 2010;121:2565-2574.)Key Words: hypoxia Ⅲ ischemia Ⅲ myocardial infarction Ⅲ myocytes Ⅲ stress I schemic heart disease remains the greatest cause of mortality in Western countries and the predicted leading source of mortality worldwide by 2020. 1 Blockage of heart blood flow leads to myocardial ischemia. Persistent ischemia causes myocardial infarctions, resulting in profound myocyte death, irreversible myocardial damage, and a permanent loss of contractile mass. Timely reperfusion of ischemic heart is the only way to preserve cardiac cell viability. However, reperfusion can trigger further damage to the myocardium (ie, ischemia/reperfusion [IR] injury) via reactive oxygen species-induced oxidative stress, calcium overload, or calpain activation. [2][3][4] Both ischemic injury and subsequent IR injury after restoration of blood flow represent important therapeutic targets. Editorial on p 2547 Clinical Perspective on p 2574Interventional approaches against IR injury have centered on the study of ischemic preconditioning (IPC), in which nonlethal ischemic stress to the heart (IPC) protects against subsequent lethal IR injury in the heart. 5-7 IPC is the most powerful intrinsic cellular mechanism to protect the heart as well as other organs, such as brain, liver, and kidney, from IR injury. 8 -11 A variety of signaling mo...
SummaryThe gap in knowledge of the molecular mechanisms underlying differentiation of human pluripotent stem cells (hPSCs) into the mesenchymal cell lineages hinders the application of hPSCs for cell-based therapy. In this study, we identified a critical role of muscle segment homeobox 2 (MSX2) in initiating and accelerating the molecular program that leads to mesenchymal stem/stromal cell (MSC) differentiation from hPSCs. Genetic deletion of MSX2 impairs hPSC differentiation into MSCs. When aided with a cocktail of soluble molecules, MSX2 ectopic expression induces hPSCs to form nearly homogeneous and fully functional MSCs. Mechanistically, MSX2 induces hPSCs to form neural crest cells, an intermediate cell stage preceding MSCs, and further differentiation by regulating TWIST1 and PRAME. Furthermore, we found that MSX2 is also required for hPSC differentiation into MSCs through mesendoderm and trophoblast. Our findings provide novel mechanistic insights into lineage specification of hPSCs to MSCs and effective strategies for applications of stem cells for regenerative medicine.
Diabetes mellitus is an emerging global threat to human health. It is estimated that the total number of people experiencing diabetes mellitus will reach 366 million in 2030. 1 Although hypertension and coronary narrowing are major pathogenic factors of acquired cardiomyopathy, diabetes mellitus has been established as an independent risk factor since 1972.2 Diabetic cardiomyopathy, as a major complication, is the leading cause of morbidity and mortality for diabetic patients. Epidemiological studies have demonstrated that diabetic people have a 2-to 5-fold increase of risk in developing heart failure compared with age-matched healthy subjects after adjusting for age, blood pressure, weight, cholesterol level, and coronary artery disease. 3-7 Editorial see p 771 Clinical Perspective on p 804Rodent models are of particular value in study of diabetic cardiomyopathy because there is minimal confounding involvement of coronary atherosclerosis. It has been demonstrated that diabetic mice and rats fed with high-fat diet display cardiac remodeling and dysfunction. [8][9][10][11] Recently we and others have shown that mice overexpressing Mitsugumin 53 (MG53) Background-Diabetic cardiomyopathy, which contributes to >50% diabetic death, is featured by myocardial lipid accumulation, hypertrophy, fibrosis, and cardiac dysfunction. The mechanism underlying diabetic cardiomyopathy is poorly understood. Recent studies have shown that a striated muscle-specific E3 ligase Mitsugumin 53 (MG53, or TRIM72) constitutes a primary causal factor of systemic insulin resistance and metabolic disorders. Although it is most abundantly expressed in myocardium, the biological and pathological roles of MG53 in triggering cardiac metabolic disorders remain elusive. Methods and Results-Here we show that cardiac-specific transgenic expression of MG53 induces diabetic cardiomyopathy in mice. Specifically, MG53 transgenic mouse develops severe diabetic cardiomyopathy at 20 weeks of age, as manifested by insulin resistance, compromised glucose uptake, increased lipid accumulation, myocardial hypertrophy, fibrosis, and cardiac dysfunction. Overexpression of MG53 leads to insulin resistant via destabilizing insulin receptor and insulin receptor substrate 1. More importantly, we identified a novel role of MG53 in transcriptional upregulation of peroxisome proliferation-activated receptor alpha and its target genes, resulting in lipid accumulation and lipid toxicity, thereby contributing to diabetic cardiomyopathy. Conclusions-Our results suggest that overexpression of myocardial MG53 is sufficient to induce diabetic cardiomyopathy via dual mechanisms involving upregulation of peroxisome proliferation-activated receptor alpha and impairment of insulin signaling. These findings not only reveal a novel function of MG53 in regulating cardiac peroxisome proliferation-activated receptor alpha gene expression and lipid metabolism, but also underscore MG53 as an important therapeutic target for diabetes mellitus and associated cardiomyopathy. develop obes...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.