SummaryThe role ofprostaglandin E 2 (PGE2) in the development of inflammatory symptoms and cytokine production was evaluated in vivo using a neutralizing anti-PGE2 monoclonal antibody 2B5. In carrageenan-induced paw inflammation, pretreatment of rats with 2B5 substantially prevented the development of tissue edema and hyperalgesia in affected paws. The antibody was shown to bind the majority of PGE 2 produced at the inflammatory site. In adjuvantinduced arthritis, the therapeutic administration of 2B5 to arthritic rats substantially reversed edema in affected paws. Anti-PGE2 treatment also reduced paw levels oflL-6 lq.NA and serum IL-6 protein without modifying tumor necrosis factor P, NA levels in the same tissue. In each model, the antiinflammatory efficacy of 2B5 was indistinguishable front that of the nonsteroidal antiinflammatory drug indomethacin, which blocked the production of all PGs. These results indicate that PGE 2 plays a major role in tissue edema, hyperalgesia, and IL-6 production at sites of inflammation, and they suggest that selective pharmacologic modulation of PGE 2 synthesis or activity may provide a useful means of mitigating the symptoms of inflammatory disease.
The outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread to become a worldwide emergency. Early identification of patients at risk of progression may facilitate more individually aligned treatment plans and optimized utilization of medical resource. Here we conducted a multicenter retrospective study involving patients with moderate COVID-19 pneumonia to investigate the utility of chest computed tomography (CT) and clinical characteristics to risk-stratify the patients. Our results show that CT severity score is associated with inflammatory levels and that older age, higher neutrophil-to-lymphocyte ratio (NLR), and CT severity score on admission are independent risk factors for short-term progression. The nomogram based on these risk factors shows good calibration and discrimination in the derivation and validation cohorts. These findings have implications for predicting the progression risk of COVID-19 pneumonia patients at the time of admission. CT examination may help risk-stratification and guide the timing of admission.
Background-Ischemic heart disease is the greatest cause of death in Western countries. The deleterious effects of cardiac ischemia are ameliorated by ischemic preconditioning (IPC), in which transient ischemia protects against subsequent severe ischemia/reperfusion injury. IPC activates multiple signaling pathways, including the reperfusion injury salvage kinase pathway (mainly PI3K-Akt-glycogen synthase kinase-3 [GSK3] and ERK1/2) and the survivor activating factor enhancement pathway involving activation of the JAK-STAT3 axis. Nevertheless, the fundamental mechanism underlying IPC is poorly understood. Methods and Results-In the present study, we define MG53, a muscle-specific TRIM-family protein, as a crucial component of cardiac IPC machinery. Ischemia/reperfusion or hypoxia/oxidative stress applied to perfused mouse hearts or neonatal rat cardiomyocytes, respectively, causes downregulation of MG53, and IPC can prevent ischemia/ reperfusion-induced decrease in MG53 expression. MG53 deficiency increases myocardial vulnerability to ischemia/ reperfusion injury and abolishes IPC protection. Overexpression of MG53 attenuates whereas knockdown of MG53 enhances hypoxia-and H 2 O 2 -induced cardiomyocyte death. The cardiac protective effects of MG53 are attributable to MG53-dependent interaction of caveolin-3 with phosphatidylinositol 3 kinase and subsequent activation of the reperfusion injury salvage kinase pathway without altering the survivor activating factor enhancement pathway. Conclusions-These results establish MG53 as a primary component of the cardiac IPC response, thus identifying a potentially important novel therapeutic target for the treatment of ischemic heart disease. (Circulation. 2010;121:2565-2574.)Key Words: hypoxia Ⅲ ischemia Ⅲ myocardial infarction Ⅲ myocytes Ⅲ stress I schemic heart disease remains the greatest cause of mortality in Western countries and the predicted leading source of mortality worldwide by 2020. 1 Blockage of heart blood flow leads to myocardial ischemia. Persistent ischemia causes myocardial infarctions, resulting in profound myocyte death, irreversible myocardial damage, and a permanent loss of contractile mass. Timely reperfusion of ischemic heart is the only way to preserve cardiac cell viability. However, reperfusion can trigger further damage to the myocardium (ie, ischemia/reperfusion [IR] injury) via reactive oxygen species-induced oxidative stress, calcium overload, or calpain activation. [2][3][4] Both ischemic injury and subsequent IR injury after restoration of blood flow represent important therapeutic targets. Editorial on p 2547 Clinical Perspective on p 2574Interventional approaches against IR injury have centered on the study of ischemic preconditioning (IPC), in which nonlethal ischemic stress to the heart (IPC) protects against subsequent lethal IR injury in the heart. 5-7 IPC is the most powerful intrinsic cellular mechanism to protect the heart as well as other organs, such as brain, liver, and kidney, from IR injury. 8 -11 A variety of signaling mo...
Murine sclerodermatous graft-vs-host disease (Scl GVHD) models human scleroderma, with prominent skin thickening, lung fibrosis, and up-regulation of cutaneous collagen mRNA. Fibrosis in Scl GVHD may be driven by infiltrating TGF-β1-producing mononuclear cells. Here we characterize the origin and types of those cutaneous effector cells, the cytokine and chemokine environments, and the effects of anti-TGF-β Ab on skin fibrosis, immune cell activation markers, and collagen and cytokine synthesis. Donor cells infiltrating skin in Scl GVHD increase significantly at early time points post-transplantation and are detectable by PCR analysis of Y-chromosome sequences when female mice are transplanted with male cells. Cutaneous monocyte/macrophages and T cells are the most numerous cells in Scl GVHD compared with syngeneic controls. These immune cells up-regulate activation markers (MHC class II I-Ad molecules and class A scavenger receptors), suggesting Ag presentation by cutaneous macrophages in early fibrosing disease. Early elevated cutaneous mRNA expression of TGF-β1, but not TGF-β2 or TGF-β3, and elevated C-C chemokines macrophage chemoattractant protein-1, macrophage inflammatory protein-1α, and RANTES precede subsequent skin and lung fibrosis. Therefore, TGF-β1-producing donor mononuclear cells may be critical effector cells, and C-C chemokines may play important roles in the initiation of Scl GVHD. Abs to TGF-β prevent Scl GVHD by effectively blocking the influx of monocyte/macrophages and T cells into skin and by abrogating up-regulation of TGF-β1, thereby preventing new collagen synthesis. The Scl GVHD model is valuable for testing new interventions in early fibrosing diseases, and chemokines may be new potential targets in scleroderma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.