Rolling bearings are the most prone components to failure in urban rail trains, presenting potential danger to cities and their residents. This paper puts forward a rolling bearing fault diagnosis method by integrating empirical mode decomposition (EMD) and genetic neural network adaptive boosting (GNN-AdaBoost). EMD is an excellent tool for feature extraction and during which some intrinsic mode functions (IMFs) are obtained. GNN-AdaBoost fault identification algorithm, which uses genetic neural network (GNN) as sub-classifier of the boosting algorithm, is proposed in order to address the shortcomings in classification when only using a GNN. To demonstrate the excellent performance of the approach, experiments are performed to simulate different operating conditions of the rolling bearing, including high speed, low speed, heavy load and light load. For de-nosing signal, by EMD decomposition is applied to obtain IMFs, which is used for extracting the IMF energy feature parameters. The combination of IMF energy feature parameters and some time-domain feature parameters are selected as the input vectors of the classifiers. Finally, GNN-AdaBoost and GNN are applied to experimental examples and the identification results are compared. The results show that GNN-AdaBoost offers significant improvement in rolling bearing fault diagnosis for urban rail trains when compared to GNN alone.
Objectives
Internet addiction (IA) has been associated with widespread brain alterations. Functional connectivity (FC) and network analysis results related to IA are inconsistent between studies, and how network hubs change is not known. The aim of this study was to evaluate functional and topological networks using an unbiased minimum spanning tree (MST) analysis on electroencephalography (EEG) data in IA and healthy control (HC) college students.
Methods
In this study, Young's internet addiction test was used as an IA severity measure. EEG recordings were obtained in IA (
n
= 30) and HC participants (
n
= 30), matched for age and sex, during rest. The phase lag index (PLI) and MST were applied to analyze FC and network topology. We expected to obtain evidence of underlying alterations in functional and topological networks related to IA.
Results
IA participants showed higher delta FC between left‐side frontal and parieto‐occipital areas compared to the HC group (
p
< 0.001), global MST measures revealed a more star‐like network in IA participants in the upper alpha and beta bands, and the occipital brain region was relatively less important in the IA relative to the HC group in the lower band. The correlation results were consistent with the MST results: higher IA severity correlated with higher Max degree and kappa, and lower eccentricity and diameter.
Conclusions
Functional networks of the IA group were characterized by increased FC, a more random organization, and a decrease of relative functional importance of the visual processing area. Taken together, these alterations can help us understand the influence of IA to brain mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.