Fluorophores with donor-acceptor-donor groups with the emission spanning the second near-infrared window (NIR-II) have recently received great attention for biomedical application. Yet, the mechanism underlying the equilibrium between fluorescence (radiative decay) and photothermal effect (non-radiative decay) of these fluorophores remains elusive. Here, we demonstrate that a lipophilic NIR-II fluorophore, BPBBT, possesses both twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) characteristics. Human serum albumin (HSA) binds to BPBBT, which changes the planarity of the fluorophore and restricts its intramolecular rotation. The binding results in alteration to the equilibrium between AIE and TICT state of BPBBT, tailoring its fluorescence and photothermal efficiency. Under the guidance of intraoperative NIR-II fluorescence image, the prepared HSA-bound BPBBT nanoparticles delineate primary orthotopic mouse colon tumor and metastatic lesions with dimensions as small as 0.5 mm × 0.3 mm, and offer photothermal ablation therapy with optimized timing, dosing and area of the laser irradiation.
BackgroundSalinity-alkalinity stress is one of the major abiotic stresses affecting plant growth and development. γ-Aminobutyrate (GABA) is a non-protein amino acid that functions in stress tolerance. However, the interactions between cellular redox signaling and chlorophyll (Chl) metabolism involved in GABA-induced salinity-alkalinity stress tolerance in plants remains largely unknown. Here, we investigated the role of GABA in perceiving and regulating chlorophyll biosynthesis and oxidative stress induced by salinity-alkalinity stress in muskmelon leaves. We also evaluated the effects of hydrogen peroxide (H2O2), glutathione (GSH), and ascorbate (AsA) on GABA-induced salinity-alkalinity stress tolerance.ResultsSalinity-alkalinity stress increased malondialdehyde (MDA) content, relative electrical conductivity (REC), and the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR). Salinity-alkalinity stress decreased shoot dry and fresh weight and leaf area, reduced glutathione and ascorbate (GSH and AsA) contents, activities of glutathione reductase (GR) and monodehydroascorbate reductase (MDAR). By contrast, pretreatment with GABA, H2O2, GSH, or AsA significantly inhibited these salinity-alkalinity stress-induced effects. The ability of GABA to relieve salinity-alkalinity stress was significantly reduced when the production of endogenous H2O2 was inhibited, but was not affected by inhibiting endogenous AsA and GSH production. Exogenous GABA induced respiratory burst oxidase homologue D (RBOHD) genes expression and H2O2 accumulation under normal conditions but reduced the H2O2 content under salinity-alkalinity stress. Salinity-alkalinity stress increased the accumulation of the chlorophyll synthesis precursors glutamate (Glu), δ-aminolevulinic acid (ALA), porphobilinogen (PBG), uroporphyrinogen III (URO III), Mg-protoporphyrin IX (Mg-proto IX), protoporphyrin IX (Proto IX), protochlorophyll (Pchl), thereby increasing the Chl content. Under salinity-alkalinity stress, exogenous GABA increased ALA content, but reduced the contents of Glu, PBG, URO III, Mg-proto IX, Proto IX, Pchl, and Chl. However, salinity-alkalinity stress or GABA treated plant genes expression involved in Chl synthesis had no consistent trends with Chl precursor contents.ConclusionsExogenous GABA elevated H2O2 may act as a signal molecule, while AsA and GSH function as antioxidants, in GABA-induced salinity-alkalinity tolerance. These factors maintain membrane integrity which was essential for the ordered chlorophyll biosynthesis. Pretreatment with exogenous GABA mitigated salinity-alkalinity stress caused excessive accumulation of Chl and its precursors, to avoid photooxidation injury.Electronic supplementary materialThe online version of this article (10.1186/s12870-019-1660-y) contains supplementary material, which is available to authorized users.
Cancer photodynamic therapy (PDT) represents an attractive local treatment in combination with immunotherapy. Successful cancer PDT relies on image guidance to ensure the treatment accuracy. However, existing nanotechnology for co-delivery of photosensitizers and image contrast agents slows the clearance of PDT agents from the body and causes a disparity between the release profiles of the imaging and PDT agents. We have found that the photosensitizer Chlorin e6 (Ce6) is inherently bound to immunoglobulin G (IgG) in a nanomolarity range of affinity. Ce6 and IgG self-assemble to form the nanocomplexes termed Chloringlobulin (Chlorin e6 + immunoglobulin G). Chloringlobulin enhances the Ce6 concentration in the tumor without changing its elimination half-life in blood. Utilizing the immune checkpoint inhibitor antiprogrammed death ligand 1 (PD-L1) (αPD-L1) to prepare αPD-L1 Chloringlobulin, we have demonstrated a combination of Ce6-based red-light fluorescence image-guided surgery, stereotactic PDT, and PD-L1 blockade therapy of mice bearing orthotopic glioma. In mice bearing an orthotopic colon cancer model, we have prepared another Chloringlobulin that allows intraoperative fluorescence image-guided PDT in combination with PD-L1 and cytotoxic T lymphocyte antigen 4 (CTLA-4) dual checkpoint blockade therapy. The Chloringlobulin technology shows great potential for clinical translation of combinatorial intraoperative fluorescence image-guided PDT and checkpoint blockade therapy.
A novel approach to aryl or alkenyl nitriles from benzyl and allyl halides has been developed. A tandem TBAB-catalyzed substitution and the subsequent novel oxidative rearrangement are involved in this transformation. To the best of our knowledge, this is the first transformation from allyl halides to alkenyl nitriles. The broad reaction scope and the mild conditions may make these methods of use in organic synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.