Attitude determination is fundamental for spacecraft missions in aerospace engineering. Kalman filter (KF) is the optimal estimator in least square sense and, using the symmetry properties of matrix Lie groups system, the invariant Kalman filter (IKF) has been developed to boost the filtering performance for attitude estimation. However, due to presence of frequent and severer maneuvers, the Lie groups attitude dynamics is usually corrupted by significant biases and heavy-tailed outliers, which usually leads to decreased precision of IKF. For attitude estimation problem troubled by biased and heavy-tailed process noise, this work proposes a new invariant Kalman filter (VBAIKF) by constructing the hierarchical Gaussian system model: the probability density function of prior estimate state is first described using the student’s t distribution, while the unknown scale covariance matrix and degrees of freedom (dof) of the employed student’s t distribution are defined as the inverse Wishart distribution (IWD) and Gamma distribution. In VBAIKF, the Lie groups rotation matrix of spacecraft, the biased mean, the parameters of dof and scale covariance matrix are online estimated together by variational Bayesian fixed-point iterations. The simulation results with Lie groups attitude estimation system further verify the superior filtering adaptability and precision of proposed approach VBAIKF than other methods for attitude determination with biased mean and heavy-tailed process noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.