Inhibition of γ-secretase activity represents a potential therapeutic strategy for Alzheimer’s disease (AD). MRK-560 is a selective inhibitor with higher potency for Presenilin 1 (PS1) than for PS2, the two isoforms of the catalytic subunit of γ-secretase, although the underlying mechanism remains elusive. Here we report the cryo-electron microscopy (cryo-EM) structures of PS1 and PS2-containing γ-secretase complexes with and without MRK-560 at overall resolutions of 2.9-3.4 Å. MRK-560 occupies the substrate binding site of PS1, but is invisible in PS2. Structural comparison identifies Thr281 and Leu282 in PS1 to be the determinant for isoform-dependent sensitivity to MRK-560, which is confirmed by swapping experiment between PS1 and PS2. By revealing the mechanism for isoform-selective inhibition of presenilin, our work may facilitate future drug discovery targeting γ-secretase.
Significance
γ-secretase activating protein (GSAP) has emerged as a key regulator of γ-secretase. In cells, GSAP exists primarily in the form of a 16-kDa fragment known as GSAP-16K. In this study, we report the finding that GSAP-16K undergoes phase separation in vitro and in cells. Importantly, the outcome of GSAP-16K phase separation directly regulates the protease activity of human γ-secretase. Through direct interaction with the substrate amyloid precursor protein–C-terminal 99-residue fragment, GSAP-16K in dilute phase favors the production of β-amyloid peptide 42 (Aβ42) but not Aβ40. These observations not only explain how GSAP activates γ-secretase but also identify their interaction as a target of potential therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.