Accurate and rapid diagnosis of COVID-19 suspected cases plays a crucial role in timely quarantine and medical treatment. Developing a deep learning-based model for automatic COVID-19 detection on chest CT is helpful to counter the outbreak of SARS-CoV-2. A weakly-supervised deep learning-based software system was developed using 3D CT volumes to detect COVID-19. For each patient, the lung region was segmented using a pre-trained UNet; then the segmented 3D lung region was fed into a 3D deep neural network to predict the probability of COVID-19 infectious. 499 CT volumes collected from Dec. 13, 2019, to Jan. 23, 2020, were used for training and 131 CT volumes collected from Jan 24, 2020, to Feb 6, 2020, were used for testing. The deep learning algorithm obtained 0.959 ROC AUC and 0.976 PR AUC. There was an operating point with 0.907 sensitivity and 0.911 specificity in the ROC curve. When using a probability threshold of 0.5 to classify COVID-positive and COVID-negative, the algorithm obtained an accuracy of 0.901, a positive predictive value of 0.840 and a very high negative predictive value of 0.982. The algorithm took only 1.93 seconds to process a single patient's CT volume using a dedicated GPU. Our weaklysupervised deep learning model can accurately predict the COVID-19 infectious probability in chest CT volumes without the need for annotating the lesions for training. The easily-trained and highperformance deep learning algorithm provides a fast way to identify COVID-19 patients, which is beneficial to control the outbreak of SARS-CoV-2. The developed deep learning software is available at https://github.com/sydney0zq/covid-19-detection.
Accurate and rapid diagnosis of COVID-19 suspected cases plays a crucial role in timely quarantine and medical treatment. Developing a deep learning-based model for automatic COVID-19 diagnosis on chest CT is helpful to counter the outbreak of SARS-CoV-2. A weaklysupervised deep learning framework was developed using 3D CT volumes for COVID-19 classification and lesion localization. For each patient, the lung region was segmented using a pre-trained UNet; then the segmented 3D lung region was fed into a 3D deep neural network to predict the probability of COVID-19 infectious; the COVID-19 lesions are localized by combining the activation regions in the classification network and the unsupervised connected components. 499 CT volumes were used for training and 131 CT volumes were used for testing. Our algorithm obtained 0.959 ROC AUC and 0.976 PR AUC. When using a probability threshold of 0.5 to classify COVID-positive and COVID-negative, the algorithm obtained an accuracy of 0.901, a positive predictive value of 0.840 and a very high negative predictive value of 0.982. The algorithm took only 1.93 seconds to process a single patient's CT volume using a dedicated GPU. Our weakly-supervised deep learning
The scarcity of fully-annotated data becomes the biggest obstacle that prevents many deep learning approaches from widely applied. Weakly-supervised visual learning which can utilize inexact annotations is developed rapidly to remedy such a situation. In this paper, we study the weakly-supervised task achieving pixel-level semantic segmentation only with image-level labels as supervision. Different from other methods, our approach tries to transform the weakly-supervised visual learning problem into a semi-supervised visual learning problem and then utilizes semi-supervised learning methods to solve it. Utilizing this transformation, we can adopt effective semi-supervised methods to perform transductive learning with context information. In the semi-supervised learning module, we propose to use the graph cut algorithm to label more supervision from the activation seeds generated from a classification network. The generated labels can provide the segmentation model with effective supervision information; moreover, the graph cut module can benefit from features extracted by the segmentation model. Then, each of them updates and optimizes the other iteratively until convergence. Experiment results on PASCAL VOC and COCO benchmarks demonstrate the effectiveness of the proposed deep graph cut algorithm for weakly-supervised semantic segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.