Electrocatalytic conversion of carbon dioxide into high‐value multicarbon (C2+) chemical feedstocks offers a promising avenue to liberate the chemical industry from fossil‐resource dependence and eventually close the anthropogenic carbon cycle but is severely impeded by the lack of high‐performance catalysts. To break the linear scaling relationship of intermediate binding and minimize the kinetic barrier of CO2 reduction reactions, ternary Cu–Au/Ag nanoframes were fabricated to decouple the functions of CO generation and C−C coupling, whereby the former is promoted by the alloyed Ag/Au substrate and the latter is facilitated by the highly strained and positively charged Cu domains. Thus, C2H4 production in an H‐cell and a flow cell occurred with high Faradic efficiencies of 69±5 and 77±2 %, respectively, as well as good electrocatalytic stability and material durability. In situ IR and DFT calculations unveiled two competing pathways for C2H4 generation, of which direct CO dimerization is energetically favored.
The surface decoration of CoS2 on SPAN–CNT nanofibers endows lithium–sulfur (Li–S) batteries with outstanding capacity reversibility and high energy density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.