The advent of social networks poses severe threats on user privacy as adversaries can de-anonymize users' identities by mapping them to correlated cross-domain networks. Without ground-truth mapping, prior literature proposes various cost functions in hope of measuring the quality of mappings. However, there is generally a lacking of rationale behind the cost functions, whose minimizer also remains algorithmically unknown.We jointly tackle above concerns under a more practical social network model parameterized by overlapping communities, which, neglected by prior art, can serve as side information for de-anonymization. Regarding the unavailability of groundtruth mapping to adversaries, by virtue of the Minimum Mean Square Error (MMSE), our first contribution is a well-justified cost function minimizing the expected number of mismatched users over all possible true mappings. While proving the NPhardness of minimizing MMSE, we validly transform it into the weighted-edge matching problem (WEMP), which, as disclosed theoretically, resolves the tension between optimality and complexity: (i) WEMP asymptotically returns a negligible mapping error in large network size under mild conditions facilitated by higher overlapping strength; (ii) WEMP can be algorithmically characterized via the convex-concave based de-anonymization algorithm (CBDA), perfectly finding the optimum of WEMP. Extensive experiments further confirm the effectiveness of CBDA under overlapping communities, in terms of averagely 90% reidentified users in the rare true cross-domain co-author networks when communities overlap densely, and roughly 70% enhanced re-identification ratio compared to non-overlapping cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.