The aim of this study is to establish a new method with high sensitivity, accuracy, and stability for the determination of human IgG and then expand it to analyze severe acute respiratory syndrome corona virus 2 (SARS-CoV-2)-specific IgM and IgG, which is of great significance for the screening and diagnosis of COVID-19. In this study, the magnetic Fe 3 O 4 nanospheres coupled with mouse antihuman IgG (Ab1 IgG ) were used as an immune capture probe (Fe 3 O 4 @Ab1 IgG ) to capture and separate the target, and rabbit antihuman IgG (Ab2 IgG ) coupled with highly luminescent quantum dot nanobeads (QBs) as a fluorescence detection probe (QBs@Ab2 IgG ) was used to realize high sensitivity detection. After the formation of a sandwich immunocomplex, the fluorescence intensity of the precipitate after magnetic separation was measured at the excitation wavelength of 370 nm. Under optimal conditions, a wide linear range varying from 0.005 to 40 ng·mL –1 was obtained for the detection of human IgG with a lower limit of detection at 4 pg·mL –1 (S/N = 3). The recoveries of intra- and interassays were 90.0–101.9 and 96.0–106.6%, respectively, and the relative standard deviations were 6.3–10.2 and 2.6–10.5%, respectively. Furthermore, the proposed method was successfully demonstrated to detect human IgG in serum samples, and the detection results were not statistically different ( P > 0.05) from commercial enzyme-linked immunosorbent assay kits. This method is sensitive, fast, and accurate, which could be expanded to detect the specific IgM and IgG antibodies against SARS-CoV-2.
Soy contains many bioactive phytochemicals, such as isoflavones, which have the effect of preventing many cancers. Some studies have shown the beneficial effect of soy-based food and isoflavone intake on gastric cancer (GC), while others claimed no effect. Therefore, whether the beneficial effect of soy-based food is related to its fermentation or whether its protective effect comes from isoflavones still remains inconclusive. Our aim was to investigate the relationship between total soybean, fermented soybean, non-fermented soybean and isoflavone intake, and the risk of GC. Ten cohort studies and 21 case-control studies involving 916 354 participants were included. The association between soy-based food and isoflavone intake and the risk of GC was calculated with the pooled relative risks (RRs) for the highest versus lowest intake categories. The results showed that isoflavone intake might be a protective factor to GC, but the result was not statistically significant (RR = 0.92; 95% CI: 0.79-1.07). However, total soybean intake could significantly decrease the risk of GC by 36% (RR = 0.64; 95% CI: 0.51-0.80), which might be credited to non-fermented soybean products (RR = 0.79; 95% CI: 0.71-0.87). In contrast, high intake of fermented soybean products could increase the risk of GC (RR = 1.19; 95% CI: 1.02-1.38). High intake of total soybean and non-fermented soybean products could reduce the risk of GC, and high intake of fermented soybean products could increase the risk, which indicated that the beneficial effect of soy-based food might be related to its non-fermentation. However, high intake of isoflavones may not be associated with the incidence of GC.
Ochratoxin A (OTA) is a common mycotoxin, and it is a significant threat to human health throughout the food chain. In this study, a sensitive and specific fluorescent sensor based on magnetic separation technology combined with chain displacement amplification was developed for fast and easy detection of OTA in food. The designed strand displacement amplification can improve the sensitivity for the detection, and the magnetic nanomaterials can provide a large surface area, thus enhancing the capture efficiency of the target from the sample. Based on those designs, the experimental results showed that the proposed method displayed excellent performance. The linearity range was 0.5–128.0 ng/mL. The detection limit was 0.125 ng/mL; the relative standard deviations were 3.92–7.71%. Additionally, the developed method was satisfactorily applied to determine OTA in wheat, corn, and red wine samples at three spiked levels (1.0, 8.0, and 64.0 ng/mL). The recoveries ranged from 85.45 to 107.8% for wheat flour, 101.34 to 108.35% for corn flour, and 91.15 to 93.80% for red wine, respectively. Compared with high-performance liquid chromatography, the proposed method showed a lower limit of detection and equal recovery. Hence, the designed method is a potential and good detecting tool for OTA residue analysis in complex matrix samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.