Human failures occur in nuclear power plants when operators are under acute stress. Therefore, an automatic stressed recognition system should be developed for nuclear power work. Previous studies on the prediction of stress are limited because of their reliance on subjective ratings and contact physiological measurement. To solve this problem, we developed a non-intrusive way by using voice features to detect stress. We aim to build a system that can estimate the level of stress from speech which may be applied to nuclear power plants where operators engage in regular verbal communication as part of their duties. In this study, we collected voice recordings from 34 participants during a simulated nuclear plant power task in a time-limited situation that requires high cognitive resources. Mel frequency cepstrum coefficients (MFCCs) were extracted from stressed voice samples and the neural network model was used to assess stress levels continuously. The experimental results showed that voice features can provide satisfactory predictions of the stress state. Mean relative errors of prediction are possible within approximately 5%. We discuss the implications of the use of voice as a minimally intrusive means for monitoring the effects of stress on cognitive performance in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.