For the detection of marine ship objects in radar images, large-scale networks based on deep learning are difficult to be deployed on existing radar-equipped devices. This paper proposes a lightweight convolutional neural network, LiraNet, which combines the idea of dense connections, residual connections and group convolution, including stem blocks and extractor modules. The designed stem block uses a series of small convolutions to extract the input image features, and the extractor network adopts the designed two-way dense connection module, which further reduces the network operation complexity. Mounting LiraNet on the object detection framework Darknet, this paper proposes Lira-you only look once (Lira-YOLO), a lightweight model for ship detection in radar images, which can easily be deployed on the mobile devices. Lira-YOLO's prediction module uses a two-layer YOLO prediction layer and adds a residual module for better feature delivery. At the same time, in order to fully verify the performance of the model, mini-RD, a lightweight distance Doppler domain radar images dataset, is constructed. Experiments show that the network complexity of Lira-YOLO is low, being only 2.980 Bflops, and the parameter quantity is smaller, which is only 4.3 MB. The mean average precision (mAP) indicators on the mini-RD and SAR ship detection dataset (SSDD) reach 83.21% and 85.46%, respectively, which is comparable to the tiny-YOLOv3. Lira-YOLO has achieved a good detection accuracy with less memory and computational cost.
The pig market had experienced a cycle of price rise and fall, also known as the “pig cycle.” This paper analyzes the fluctuation relationship between pig price, pig supply, and pork demand, constructs a system dynamics model of the pig industry by decomposing the structure of the pig supply chain, and then discusses the causes of “pig cycle,” as well as the supply chain management strategy and industrial policy, to stabilize the pig industry market. Research shows that reducing the cost of pig breeding, countercyclical adjustment, and government macrocontrol can effectively reduce the fluctuation of pig prices. Among them, reducing the pig breeding cost is the most effective long-term strategy to stabilize the pig price.
Creating an effective and efficient distribution plan is a considerable challenge owing to urgency, incomplete information, and surging demands. In this study, a planning method based on a sliding time window series is designed to solve the problem of drug distribution in earthquake responses. First, this study presents a method designed to generate a series of sliding time windows considering time-varying demands. Second, a method is proposed to determine the effectiveness of the drug distribution plan according to its evaluation standards. Third, a dynamic planning model is established considering the sliding time window series and group information updates. Fourth, a simulation study is conducted to test the models and algorithms. Simulation results show that specific drug distribution plans should be provided to emergency planners in the event of an earthquake. The sliding time window series and group information updates are key factors in creating an effective drug distribution plan as part of an earthquake response.
After an earthquake, affected areas have insufficient medicinal supplies, thereby necessitating substantial distribution of first-aid medicine from other supply centers. To make a proper distribution schedule, we considered the timing of supply and demand. In the present study, a “sequential time window” is used to describe the time to generate of supply and demand and the time of supply delivery. Then, considering the sequential time window, we proposed two multiobjective scheduling models with the consideration of demand uncertainty; two multiobjective stochastic programming models were also proposed to solve the scheduling models. Moreover, this paper describes a simulation that was performed based on a first-aid medicine distribution problem during a Wenchuan earthquake response. The simulation results show that the methodologies proposed in this paper provide effective schedules for the distribution of first-aid medicine. The developed distribution schedule enables some supplies in the former time windows to be used in latter time windows. This schedule increases the utility of limited stocks and avoids the risk that all the supplies are used in the short-term, leaving no supplies for long-term use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.