Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the last decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Objective: To explore the role of neutrophil-to-lymphocyte ratio (NLR) in predicting the short-term prognosis of NSTEMI and STEMI.Methods: This study was a single-center, retrospective and observational study. 2618 patients including 1289 NSTMI and 1329 STEMI patients were enrolled from June 2013 to February 2018 in Zhongda Hospital, Southeast University. The demographic information, clinical characteristics, medical history, laboratory examination, treatment, and outcome of individuals at admission and during hospitalization were extracted from the electronic medical record system. Outcome was defined as the all-cause death during hospitalization.Results: (1) In the NSTEMI group, the ability of NLR in predicting in-hospital death (AUC = 0.746) was higher than the neutrophil-monocyte ratio (NMR) (AUC = 0.654), the platelet-lymphocyte ratio (PLR) (AUC = 0.603) and the lymphocyte-monocyte ratio (LMR) (AUC = 0.685), and also higher than AST (AUC = 0.621), CK (AUC = 0.595), LDH (AUC = 0.653) and TnI (AUC = 0.594). The AUC of NLR in the STEMI group was only 0.621. (2) The optimal cut-off value of NLR in NSTEMI group was 5.509 (Youden index = 0.447, sensitivity = 77.01%, specificity = 67.72%). After adjusting variables including age, sex, diabetes history, smoking history, LDL-C and Cr, the logistic regression showed that the patients with NLR>5.509 had higher hazard risk of death (HR4.356; 95%CI 2.552–7.435; P < 0.001) than the patients with NLR ≤ 5.509. (3) Stratification analysis showed that the in-hospital mortality of patients with NLR > 5.509 was 14.611-fold higher than those with NLR ≤ 5.509 in patients aged <76, much higher than the ratio in patients aged ≥ 76. For patients with creatinine levels ≤ 71, the in-hospital death risk in high NLR group was 10.065-fold higher than in low NLR group (95%CI 1.761–57.514, P = 0.009), while the HR was only 4.117 in patients with creatinine levels > 71. The HR in patients with or without diabetes were 6.586 and 3.375, respectively. The HR in smoking or no smoking patients were 6.646 and 4.145, respectively. The HR in patients with LDL-C ≥ 2.06 or <2.06 were 5.526 and 2.967 respectively.Conclusion: Compared to NMR, PLR, and LMR, NLR had the best ability in predicting in-hospital death after NSTEMI. Age, creatinine, LDL-C, diabetes and smoking history were all important factors affecting the predictive efficiency in NSTEMI. NLR had the limited predictive ability in STEMI.
Herein, we show intranuclear nanoribbons formed upon dephosphorylation of leucine-rich L-or Dphosphopeptide catalyzed by alkaline phosphatase (ALP) to selectively kill osteosarcoma cells. Being dephosphorylated by ALP, the peptides are first transformed into micelles and then converted into nanoribbons. The peptides/assemblies first aggregate on cell membranes, then enter cells via endocytosis, and finally accumulate in nuclei (mainly in nucleoli). Proteomics analysis suggests that the assemblies interact with histone proteins. The peptides kill osteosarcoma cells rapidly and are nontoxic to normal cells. Moreover, the repeated stimulation of the osteosarcoma cells by the peptides sensitizes the cancer cells rather than inducing resistance. This work not only illustrates a novel mechanism for nucleus targeting, but may also pave a new way for selectively killing osteosarcoma cells and minimizing drug resistance.
Emerging evidence indicates that mitochondria contribute to drug resistance in cancer, but how to selectively target the mitochondria of cancer cells remains less explored. Here, we show perimitochondrial enzymatic self-assembly for selectively targeting the mitochondria of liver cancer cells. Nanoparticles of a peptide–lipid conjugate, being a substrate of enterokinase (ENTK), encapsulate chloramphenicol (CLRP), a clinically used antibiotic that is deactivated by glucuronidases in cytosol but not in mitochondria. Perimitochondrial ENTK cleaves the Flag-tag on the conjugate to deliver CLRP selectively into the mitochondria of cancer cells, thus inhibiting the mitochondrial protein synthesis, inducing the release of cytochrome c into the cytosol and resulting in cancer cell death. This strategy selectively targets liver cancer cells over normal liver cells. Moreover, blocking the mitochondrial protein synthesis sensitizes the cancer cells, relying on glycolysis and/or OXPHOS, to cisplatin. This work illustrates a facile approach, selectively targeting mitochondria of cancer cells and repurposing clinically approved ribosome inhibitors, to interrupt the metabolism of cancer cells for cancer treatment.
Presently, little is known of how the inter‐organelle crosstalk impacts cancer cells owing to the lack of approaches that can manipulate inter‐organelle communication in cancer cells. We found that a negatively charged, enzyme cleavable peptide (MitoFlag) enables the trafficking of histone protein H2B, a nuclear protein, to the mitochondria in cancer cells. MitoFlag interacts with the nuclear location sequence of H2B to block it from entering the nucleus. A protease on the mitochondria cleaves the Flag from the MitoFlag/H2B complex to form assemblies that retain H2B on the mitochondria and facilitate H2B entering the mitochondria. Adding NLS, replacing aspartic acid by glutamic acid residues, or changing the l‐ to d‐aspartic acid residue on MitoFlag abolishes the trafficking of H2B into mitochondria of HeLa cells. As the first example of the enzyme‐instructed self‐assembly of a synthetic peptide for trafficking endogenous proteins, this work provides insights for understanding and manipulating inter‐organelle communication in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.