We present a global optimizer, based on a conditional generative neural network, which can output ensembles of highly efficient topology-optimized metasurfaces operating across a range of parameters. A key feature of the network is that it initially generates a distribution of devices that broadly samples the design space, and then shifts and refines this distribution towards favorable design space regions over the course of optimization. Training is performed by calculating the forward and adjoint electromagnetic simulations of outputted devices and using the subsequent efficiency gradients for backpropagation. With metagratings operating across a range of wavelengths and angles as a model system, we show that devices produced from the trained generative network have efficiencies comparable to or better than the best devices produced by adjoint-based topology optimization, while requiring less computational cost. Our reframing of adjoint-based optimization to the training of a generative neural network applies generally to physical systems that can utilize gradients to improve performance.
A key challenge in metasurface design is the development of algorithms that can effectively and efficiently produce high performance devices. Design methods based on iterative optimization can push the performance limits of metasurfaces, but they require extensive computational resources that limit their implementation to small numbers of microscale devices. We show that generative neural networks can train from images of periodic, topology-optimized metagratings to produce high-efficiency, topologically complex devices operating over a broad range of deflection angles and wavelengths. Further iterative optimization of these designs yields devices with enhanced robustness and efficiencies, and these devices can be utilized as additional training data for network refinement. In this manner, generative networks can be trained, with a onetime computation cost, and used as a design tool to facilitate the production of near-optimal, topologically-complex device designs. We envision that such data-driven design methodologies can apply to other physical sciences domains that require the design of functional elements operating across a wide parameter space.
We report a high-throughput and label-free computational imaging technique that simultaneously measures in three-dimensional (3D) space the locomotion and angular spin of the freely moving heads of microswimmers and the beating patterns of their flagella over a sample volume more than two orders-of-magnitude larger compared to existing optical modalities. Using this platform, we quantified the 3D locomotion of 2133 bovine sperms and determined the spin axis and the angular velocity of the sperm head, providing the perspective of an observer seated at the moving and spinning sperm head. In this constantly transforming perspective, flagellum-beating patterns are decoupled from both the 3D translation and spin of the head, which provides the opportunity to truly investigate the 3D spatio-temporal kinematics of the flagellum. In addition to providing unprecedented information on the 3D locomotion of microswimmers, this computational imaging technique could also be instrumental for micro-robotics and sensing research, enabling the high-throughput quantification of the impact of various stimuli and chemicals on the 3D swimming patterns of sperms, motile bacteria and other micro-organisms, generating new insights into taxis behaviors and the underlying biophysics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.