Background: The role of neutrophil extracellular traps (NETs) in procoagulant activity (PCA) in stroke patients caused by thromboembolic occlusion of the internal carotid artery (ICA) remains unclear. Our objectives were to evaluate the critical role of NETs in the induction of hypercoagulability in stroke and to identify the functional significance of NETs during atherothrombosis. Methods: The levels of NETs, activated platelets (PLTs), and PLT-derived microparticles (PMPs) were detected in the plasma of 55 stroke patients and 35 healthy controls. NET formation and thrombi were analysed using immunofluorescence. Exposed phosphatidylserine (PS) was evaluated with flow cytometry and confocal microscopy. PCA was analysed using purified coagulation complex, thrombin, and fibrin formation assays. Findings: The plasma levels of NETs, activated PLTs, and PMP markers in the carotid lesion site (CLS) were significantly higher than those in the aortic blood. NETs were decorated with PS in thrombi and the CLS plasma of ICA occlusion patients. Notably, the complementary roles of CLS plasma and thrombin-activated PLTs were required for NET formation and subsequent PS exposure. PS-bearing NETs provided functional platforms for PMPs and coagulation factor deposition and thus increased thrombin and fibrin formation. DNase I and lactadherin markedly inhibited these effects. In addition, NETs were cytotoxic to endothelial cells, converting these cells to a procoagulant phenotype. Sivelestat, anti-MMP9 antibody, and activated protein C (APC) blocked this cytotoxicity by 25%, 39%, or 52%, respectively. Interpretation: NETs played a pivotal role in the hypercoagulability of stroke patients. Strategies that prevent NET formation may offer a potential therapeutic strategy for thromboembolism interventions.
Polycomb group proteins regulate self-renewal and differentiation in many stem cell systems. When assembled into two canonical complexes, PRC1 and PRC2, they sequentially deposit H3K27me3 and H2AK119ub histone marks and establish repressive chromatin, referred to as Polycomb domains. Non-canonical PRC1 complexes retain RING1/RNF2 E3-ubiquitin ligases but have unique sets of accessory subunits. How these non-canonical complexes recognize and regulate their gene targets remains poorly understood. Here, we show that the BCL6 co-repressor (BCOR), a member of the PRC1.1 complex, is critical for maintaining primed pluripotency in human embryonic stem cells (ESCs). BCOR depletion leads to the erosion of Polycomb domains at key developmental loci and the initiation of differentiation along endoderm and mesoderm lineages. The C terminus of BCOR regulates the assembly and targeting of the PRC1.1 complex, while the N terminus contributes to BCOR-PRC1.1 repressor function. Our findings advance understanding of Polycomb targeting and repression in ESCs and could apply broadly across developmental systems.
Molecular changes underlying stem cell differentiation are of fundamental interest. scRNA-seq on murine hematopoietic stem cells (HSC) and their progeny MPP1 separated the cells into 3 main clusters with distinct features: active, quiescent, and an un-characterized cluster. Induction of anemia resulted in mobilization of the quiescent to the active cluster and of the early to later stage of cell cycle, with marked increase in expression of certain transcription factors (TFs) while maintaining expression of interferon response genes. Cells with surface markers of long term HSC increased the expression of a group of TFs expressed highly in normal cycling MPP1 cells. However, at least Id1 and Hes1 were significantly activated in both HSC and MPP1 cells in anemic mice. Lineage-specific genes were differently expressed between cells, and correlated with the cell cycle stages with a specific augmentation of erythroid related genes in the G2/M phase. Most lineage specific TFs were stochastically expressed in the early precursor cells, but a few, such as Klf1, were detected only at very low levels in few precursor cells. The activation of these factors may correlate with stages of differentiation. This study reveals effects of cell cycle progression on the expression of lineage specific genes in precursor cells, and suggests that hematopoietic stress changes the balance of renewal and differentiation in these homeostatic cells.
m6A RNA methylation is an emerging epigenetic modification, and its potential role in immunity and stemness remains unknown. Based on 17 widely recognized m6A regulators, the m6A modification patterns and corresponding characteristics of immune infiltration and stemness of 1152 low-grade glioma samples were comprehensively analyzed. Machine-learning strategies for constructing m6AScores were trained to quantify the m6A modification patterns of individual samples. Here, we reveal a significant correlation between the multi-omics data of regulators and clinicopathological parameters. We identified two distinct m6A modification patterns (an immune-activated differentiation pattern and an immune-desert dedifferentiation pattern) and four regulatory patterns of m6A methylation on immunity and stemness. We show that the m6AScores can predict the molecular subtype of low-grade glioma, the abundance of immune infiltration, the enrichment of signaling pathways, gene variation and prognosis. The concentration of high immunogenicity and clinical benefits in the low-m6AScore group confirmed the sensitive response to radio-chemotherapy and immunotherapy in patients with high-m6AScore. The results of the pan-cancer analyses illustrate the significant correlation between m6AScore and clinical outcome, the burden of neoepitope, immune infiltration and stemness. The assessment of individual tumor m6A modification patterns will guide us in improving treatment strategies and developing objective diagnostic tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.