The deep convolutional neural network (DeCNN) is considered one of promising techniques for classifying the highspatial-resolution remote sensing (HSRRS) scenes, due to its powerful feature extraction capabilities. It is well-known that huge high-quality labeled datasets are required for achieving the better classification performances and preventing overfitting, during the training DeCNN model process. However, the lack of high-quality datasets limits the applications of DeCNN. In order to solve this problem, in this article, we propose a HSRRS image scene classification method using transfer learning and the DeCNN (TL-DeCNN) model in a few shot HSRRS scene samples. Specifically, three typical DeCNNs of VGG19, ResNet50, and InceptionV3, trained on the ImageNet2015, the weights of their convolutional layer for that of the TL-DeCNN are transferred, respectively. Then, TL-DeCNN just needs to fine-tune its classification module on the few shot HSRRS scene samples in a few epochs. Experimental results indicate that our proposed TL-DeCNN method provides absolute dominance results without overfitting, when compared with the VGG19, ResNet50, and InceptionV3, directly trained on the few shot samples.
Informal first-person narratives are a unique resource for computational models of everyday events and people's affective reactions to them. People blogging about their day tend not to explicitly say I am happy. Instead they describe situations from which other humans can readily infer their affective reactions. However current sentiment dictionaries are missing much of the information needed to make similar inferences. We build on recent work that models affect in terms of lexical predicate functions and affect on the predicate's arguments. We present a method to learn proxies for these functions from firstperson narratives. We construct a novel fine-grained test set, and show that the patterns we learn improve our ability to predict first-person affective reactions to everyday events, from a Stanford sentiment baseline of .67F to .75F.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.