Federated learning (FL) has nourished a promising method for data silos, which enables multiple participants to construct a joint model collaboratively without centralizing data. The security and privacy considerations of FL are focused on ensuring the robustness of the global model and the privacy of participants’ information. However, the FL paradigm is under various security threats from the adversary aggregator and participants. Therefore, it is necessary to comprehensively identify and classify potential threats to provide a theoretical basis for FL with security guarantees. In this paper, a unique classification of attacks, which reviews state-of-the-art research on security and privacy issues for FL, is constructed from the perspective of malicious threats based on different computing parties. Specifically, we categorize attacks with respect to performed by aggregator and participant, highlighting the Deep Gradients Leakage attacks and Generative Adversarial Networks attacks. Following an overview of attack methods, we discuss the primary mitigation techniques against security risks and privacy breaches, especially the application of blockchain and Trusted Execution Environments. Finally, several promising directions for future research are discussed.
Since automobile engine fault is the main factor leading to a vehicle breaking down, engine fault diagnosis has captured a lot of attention. Fault diagnosis identifies fault types to facilitate maintenance. However, the method of the warning before the fault occurs is more attractive to users and is more challenging. Therefore, this study would like to explore the feasibility of implementing automobile engine fault early warning based on the fault diagnosis model. First, the theoretical method of a fault domain is established, and the state of the engine is regarded as a point in n-dimensional space. The normal or fault of the engine will correspond to different state domains in this space. Second, to diagnose multiple fault types at the same time, an ensemble model based on multiple machine learning methods is established. The probability outputs by the ensemble model measure the distance between the point and each fault domain in the space. Finally, considering the temporal factor, an early warning threshold is established based on the probability, and a fault warning model is established by using the dual probability structure. Comparative experiments show that the proposed method can greatly reduce the calculation time based on ensuring the accuracy of early warning and is suitable for real-time early warning of multiple faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.