The quality of dissolved organic matter (DOM) in a wet weather overflow (WWF) can be broadly influenced by anthropogenic factors, such as nonpoint sources of paved runoff and point sources of sanitary sewage within the drainage networks. This study focused on the anthropogenic influences of the paved runoff and sanitary sewage on the DOM quality of WWF using excitation-emission matrix parallel factor analysis (EEM-PARAFAC). Results show that (1) EEM-PARAFAC fitted terrestrial humic-like, anthropogenic humic-like, tryptophan-like, and tyrosine-like components can be regarded as indicators to identify the types of sewage overflows and the illicit connection status of drainage systems. (2) A short emission wavelength (em: 302-313 nm) peak of the tyrosine-like component occurred in the reserved sanitary sewage, while a type of longer emission wavelength (em: 321-325 nm) peak came from the sump deposit. These tyrosine-like components were gradually evacuated in the initial phase of the overflow process with the fading of their EEM signals. Fluorescence signal transformations of all the components confirmed the potential ability of EEM-PARAFAC to monitor the dynamic changes of the primary pollutant sources. (3) The input of the newly increased sanitary sewage had a dominant influence on the quality and yield of the WWF DOM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.