UAVs are flexible in action, changeable in shooting angles, and complex and changeable in the shooting environment. Most of the existing stitching algorithms are suitable for images collected by UAVs in static environments, but the images are in fact being captured dynamically, especially in low-altitude flights. Considering that the great changes of the object position may cause the low-altitude aerial images to be affected by the moving foreground during stitching, so as to result in quality problems, such as splicing misalignment and tearing, a UAV aerial image stitching algorithm is proposed based on semantic segmentation and ORB. In the image registration, the algorithm introduces a semantic segmentation network to separate the foreground and background of the image and obtains the foreground semantic information. At the same time, it uses the quadtree decomposition idea and the classical ORB algorithm to extract feature points. By comparing the feature point information with the foreground semantic information, the foreground feature points can be deleted to realize feature point matching. Based on the accurate image registration, the image stitching and fusion will be achieved by the homography matrix and the weighted fusion algorithm. The proposed algorithm not only preserves the details of the original image, but also improves the four objective data points of information entropy, average gradient, peak signal-to-noise ratio and root mean square error. It can solve the problem of splicing misalignment tearing during background stitching caused by dynamic foreground and improves the stitching quality of UAV low-altitude aerial images.
With the rapid development of mobile Internet technology, localization using visual image information has become a hot problem in the field of indoor localization research, which is not affected by signal multipath and fading and can achieve high accuracy localization in indoor areas with complex electromagnetic environments. However, in practical applications, position estimation using visual images is easily influenced by the user’s photo pose. In this paper, we propose a multiple-sensor-assisted visual localization method in which the method constructs a machine learning classifier using multiple smart sensors for pedestrian pose estimation, which improves the retrieval efficiency and localization accuracy. The method mainly combines the advantages of visual image location estimation and pedestrian pose estimation based on multiple smart sensors and considers the effect of pedestrian photographing poses on location estimation. The built-in sensors of smartphones are used as the source of pedestrian pose estimation data, which constitutes a feasible location estimation method based on visual information. Experimental results show that the method proposed in this paper has good localization accuracy and robustness. In addition, the experimental scene in this paper is a common indoor scene and the experimental device is a common smartphone. Therefore, we believe that the proposed method in this paper has the potential to be widely used in future indoor navigation applications in complex scenarios (e.g., mall navigation).
Frame buildings as important nodes of urban space. The include high-speed railway stations, airports, residences, and office buildings, which carry various activities and functions. Due to illumination irrationality and mutual occlusion between complex objects, low illumination situations frequently develop in these architectural environments. In this case, the location information of the target is difficult to determine. At the same time, the change in the indoor electromagnetic environment also affects the location information of the target. Therefore, this paper adopts the vision method to achieve target localization in low-illumination environments by feature matching of images collected in the offline state. However, the acquired images have serious quality degradation problems in low-illumination conditions, such as low brightness, low contrast, color distortion, and noise interference. These problems mean that the local features in the collected images are missing, meaning that they fail to achieve a match with the offline database images; as a result, the location information of the target cannot be determined. Therefore, a Visual Localization with Multiple-Similarity Fusions (VLMSF) is proposed based on the Nonlinear Enhancement And Local Mean Filtering (NEALMF) preprocessing enhancement. The NEALMF method solves the problem of missing local features by improving the quality of the acquired images, thus improving the robustness of the visual positioning system. The VLMSF method solves the problem of low matching accuracy in similarity retrieval methods by effectively extracting and matching feature information. Experiments show that the average localization error of the VLMSF method is only 8 cm, which is 33.33% lower than that of the Kears-based VGG-16 similarity retrieval method. Meanwhile, the localization error is reduced by 75.76% compared with the Perceptual hash (Phash) retrieval method. The results show that the method proposed in this paper greatly alleviates the influence of low illumination on visual methods, thus helping city managers accurately grasp the location information of targets under complex illumination conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.