Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (A ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with A , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia.
This paper aims to explore the detection defect of residence times difference (RTD) fluxgate working in low-power mode. It presents the countermeasures for sensor resolution improvement and linearity enhancement. The main defects are amplitude and symmetry changes induced in the output spikes of fluxgate probe due to the magnetic field. These defects lead to thresholds deviation and asymmetry, then causes severe performance degradation especially on detection resolution and linearity according to the RTD theory. To overcome such effects, the optimized RTD method based on voltage extraction and feedback technology is proposed to implement magnetic field compensation and achieve a zero-field running regime of the RTD fluxgate. In this regard, the sensor linearity is improved by a factor of 38, and the resolution degradation effect is suppressed more than 6 times, verified by the laboratory experiments. The optimized detection method proposed in this paper demonstrated a great potential to achieve lower power consumption, will make the RTD fluxgate more promising technology among bio-magnetic applications.
This paper demonstrates the probe structure optimization of coupled core fluxgate magnetic sensors through finite element analysis. The obtained modelling results have been used to optimize the probe structures from horizontal-to vertical-arrangements for magnetic crosstalk suppression and probe miniaturization. The finite element analysis show that with the same distance between each adjacent fluxgate elements, the magnetic crosstalk is suppressed by 6 times and the volume is reduced by 2 times after the optimization. Furthermore, the miniaturized probes with low magnetic crosstalk have been designed and implemented. The experimental results which showed more than 5 times suppression of magnetic crosstalk verified the simulation results. Therefore, the results provide detailed reference to cope with the contradiction between volume miniaturization and magnetic crosstalk suppression in magnetic sensor-array design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.