Microplastic polystyrene foam has been found widely in the environment and is readily transported by wind or water. Beached and virgin foams of size 0.45e1 mm were prepared as sorbents to study oxytetracycline sorption. Enhanced adsorption were found in the beached foams compared to the virgin foams, corresponding to the higher specific surface area, micropore area and the degree of oxidation of the former. The Freundlich K f value was 894 ± 84 ((mg kg À1 ) (mg L À1 ) 1/n ) for oxytetracycline adsorption on the beached foams, approximately twice as high as on the virgin foams. Effects of solution pH on adsorption to the beached foams were more pronounced to the virgin foams. Maximum adsorption occurred at pH 5 at which electrostatic repulsion between the microplastic surface and the oxytetracycline zwitterion was minimal, indicating that electrostatic interaction may have regulated adsorption. Moreover, H-bonding and multivalent cationic bridging mechanisms may also have affected the adsorption of oxytetracycline to the beached foams as reflected by the ionic effects. Adsorption was promoted more in the presence of humic acid than of fulvic acid, perhaps owing to p-p conjugation between the humic acid and the microplastic surface which led to enhanced electrostatic attraction for oxytetracycline. This study suggests that weathered polystyrene foams may act as carriers of antibiotics in the environment and their potential risks to ecosystem and human health merit further investigation.
Free-standing and binder-free porous carbon nanofibers (P-CNFs) electrodes were prepared by pyrolysis of PAN-F127/DMF nanofibers via an electrospinning process as potential anodes for Na-ion batteries (NIB). The P-CNFs delivers a reversible capacity of 266 mA h g(-1) after 100 cycles at 0.2 C, corresponding to ~80% of the initial charge capacity. When cycled at a current density as high as 500 mA g(-1) (2 C), it still delivers a reversible capacity of ~140 mA h g(-1) after 1000 cycles. The improvement of electrochemical performance is attributed to the special design and microstructure of P-CNFs, which conferred a variety of advantages: hierarchical porous channels enabling short transport length for ions and electrons, 3D interconnected structure resulting in low contact resistances, good mechanical properties leading to the excellent morphology stability.
Most of the reported mitochondria-targeting molecules are lipophilic and cationic, and thus they may become cytotoxic with accumulation. Here we show enzymatic cleavage of branched peptides that carry negative charges for targeting mitochondria. Conjugating a well-established protein tag (i.e., FLAG-tag) to self-assembling motifs affords the precursors that form micelles. Enzymatic cleavage of the hydrophilic FLAG motif (DDDDK) by enterokinase (ENTK) turns the micelles to nanofibers. After being taken up by cells, the micelles, upon the action of intracellular ENTK, turn into nanofibers to locate mainly at mitochondria. The micelles of the precursors are able to deliver cargos (either small molecules or proteins) into cells, largely to mitochondria and within 2 h. Preventing ENTK proteolysis diminishes mitochondria targeting. As the first report of using enzymatic self-assembly for targeting mitochondria and delivery cargos to mitochondria, this work illustrates a fundamentally new way to target subcellular organelles for biomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.