In this study, BiOBr-titanium phosphate (BiOBr/TP) plate-on-plate composites with p-n heterojunctions were synthesized using a simple, feasible two-step method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and UV-vis diffuse reflectance spectrometry (DRS) were used to evaluate the structure, morphology and optical properties of the composites. Rhodamine B (RhB) and ciprofloxacin (CIP) were chosen as model pollutants to evaluate the photocatalytic activity of the synthesized samples under irradiation of both ultraviolet and visible light. The BiOBr/TP composites exhibited much higher photocatalytic activity for the degradation of both pollutants than pure TP. The enhanced photocatalytic performance can be ascribed to the formed p-n heterojunctions between p-type BiOBr and n-type TP, which efficiently reduced the recombination rate of photo-excited electrons and holes. Moreover, a possible photocatalytic mechanism of organic pollutant degradation by the obtained samples was presented in detail.
AgBr@Ag modified titanium phosphate composites were fabricated through a two-step approach. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The optical properties of the composites were characterized by using UV-vis diffuse reflectance spectroscopy. The photocatalytic activities of the composites were investigated on the degradation of Rhodamine B and ciprofloxacin under visible light irradiation. AgBr@Ag/titanium phosphate was determined to exhibit considerably higher photocatalytic activity than the corresponding individual components. The mechanism on the enhancement of the photocatalytic activity was proposed based on the results of photoluminescence spectra and photocurrent measurements. Furthermore, the possible photocatalytic mechanisms of organic compounds degradation were also proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.