Ecosystem degradation and conversion are leading to a widespread reduction in the provision of ecosystem services. It is crucial for the governance of regional land spaces to rapidly identify key areas for ecosystem restoration. Herein, we combined the InVEST Habitat Quality Model with the granularity inverse method to identify ecological sources in Jiashi county, China, based on the “source-corridor” ecological security pattern paradigm. The minimum cumulative resistance model and circuit theory were adopted to diagnose the ecological “pinch points”, barrier points, break points, and key restoration areas for land space. Our results show that: (1) the area of the ecological source and the total length of the ecological corridor were identified as 1331.13 km2 and 316.30 km, respectively; (2) there were 164 key ecological “pinch points” and 69 key ecological barrier points in Jiashi county, with areas of 15.13 km2 and 14.57 km2, respectively. Based on the above ecological security pattern, recovery strategies are put forward to improve regional ecosystem health. This study describes the best practices which can be used to guide the planning and implementation of ecosystem restoration at the local landscape scale.
Ecological corridors can improve the connectivity between different habitat regions, ultimately halting the loss of biodiversity and habitat fragmentation. Building ecological corridors is a crucial step in protecting biodiversity. Ecological corridors had previously been built primarily on nature reserves, ignoring ecosystem services. In this study, a novel approach to building ecological corridors is put forth that takes into account a variety of ecosystem services, morphological spatial pattern analysis (MSPA), and connectivity methodologies to identify significant ecological sources. Ecological corridors and significant strategic nodes are created based on the minimum cumulative resistance model (MCR) and circuit theory in order to construct the Yangtze River Delta’s ecological security pattern. The research found that: (1) the identified ecological sources are 90,821.84 km2, and the total length of ecological corridors is 4704.03 km. (2) In total, 141 ecological restoration areas are identified, with a total area of 2302.77 km2; 151 ecological protection areas are identified, with a total area of 5303.43 km2. This study can provide valuable insights into the establishment of ecological patterns and the construction of priority restoration and protection areas in the ecological restoration of the Yangtze River Delta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.