Propofol (2,6-diisopropylphenol) is a commonly used intravenous anesthetic agent. The present study aimed to assess the effect of propofol on the proliferation and invasion of human glioma cells, and to determine the potential underlying molecular mechanisms. The effects of propofol on U373 glioblastoma cell proliferation, apoptosis and invasion were detected by an MTT assay, caspase-3 activity measurement and a Matrigel™ invasion assay, respectively. MicroRNA (miR)-218 expression and matrix metalloproteinase (MMP)-2 protein expression levels were analyzed by quantitative polymerase chain reaction and western blot analysis, respectively. In addition, miR-218 precursor was transfected into the cells to assess whether overexpression of miR-218 could affect MMP-2 expression. Anti-miR-218 was transfected into the cells to evaluate the role of miR-218 in the effects of propofol on the biological behavior of glioma cells. The results of the present study demonstrated that propofol significantly increased the expression levels of miR-218, inhibited U373 cell proliferation and invasion, and facilitated apoptosis. In addition, treatment with propofol efficiently reduced MMP-2 protein expression levels, and overexpression of miR-218 also decreased MMP-2 protein expression levels. Whereas, neutralization of miR-218 using the anti-miR-218 antibody reversed the effects of propofol on the biological behavior of U373 cells, and on the inhibition of MMP-2 protein expression. In conclusion, propofol may effectively suppress proliferation and invasion, and induce the apoptosis of glioma cells, at least partially through upregulation of miR-218 expression.
Electroencephalogram (EEG)-based emotion recognition (ER) has drawn increasing attention in the brain–computer interface (BCI) due to its great potentials in human–machine interaction applications. According to the characteristics of rhythms, EEG signals usually can be divided into several different frequency bands. Most existing methods concatenate multiple frequency band features together and treat them as a single feature vector. However, it is often difficult to utilize band-specific information in this way. In this study, an optimized projection and Fisher discriminative dictionary learning (OPFDDL) model is proposed to efficiently exploit the specific discriminative information of each frequency band. Using subspace projection technology, EEG signals of all frequency bands are projected into a subspace. The shared dictionary is learned in the projection subspace such that the specific discriminative information of each frequency band can be utilized efficiently, and simultaneously, the shared discriminative information among multiple bands can be preserved. In particular, the Fisher discrimination criterion is imposed on the atoms to minimize within-class sparse reconstruction error and maximize between-class sparse reconstruction error. Then, an alternating optimization algorithm is developed to obtain the optimal solution for the projection matrix and the dictionary. Experimental results on two EEG-based ER datasets show that this model can achieve remarkable results and demonstrate its effectiveness.
In recent years, research on improving the energy consumption ratio of pumping equipment through control algorithms has improved. However, the actual behavior of pump equipment and pump characteristic information do not always correspond, resulting in deviations between the calculated energy consumption operating point and the actual operating point. This eventually results in wasted power. To solve this problem, the data from circulating pumping equipment in a large pumping facility are analyzed, and the necessary characteristics of pumping equipment electrical energy consumption are analyzed through a subset of mechanism expansion feature engineering using the Pearson correlation coefficient algorithm. Based on this, a pump energy consumption prediction method based on LightGBM is constructed and compared with other algorithm models. To improve the generalization ability of the model, rules applicable to pump power energy consumption prediction are proposed, and the model features and processes are reduced. Based on the mechanistic model, 18 features related to electric energy consumption are selected, and 6 necessary features of pump electric energy consumption are screened by feature engineering. The experimental results show that the LightGBM regression algorithm has a significant prediction effect with R2=0.94. After the importance analysis, three features that are strongly related to pump energy consumption are finally screened out. According to the prediction results, the feature engineering dataset was selected and the pump electrical energy consumption was predicted based on the LightGBM algorithm, which can significantly reduce the problem of deviation in the prediction of the electrical energy consumption of pumping equipment.
Facial makeup significantly changes the perceived appearance of the face and reduces the accuracy of face recognition. To adapt to the application of smart cities, in this study, we introduce a novel joint subspace and low-rank coding method for makeup face recognition. To exploit more discriminative information of face images, we use the feature projection technology to find proper subspace and learn a discriminative dictionary in such subspace. In addition, we use a low-rank constraint in the dictionary learning. Then, we design a joint learning framework and use the iterative optimization strategy to obtain all parameters simultaneously. Experiments on real-world dataset achieve good performance and demonstrate the validity of the proposed method.
Affective computing is concerned with simulating people’s psychological cognitive processes, of which emotion classification is an important part. Electroencephalogram (EEG), as an electrophysiological indicator capable of recording brain activity, is portable and non-invasive. It has emerged as an essential measurement method in the study of emotion classification. EEG signals are typically split into different frequency bands based on rhythmic characteristics. Most of machine learning methods combine multiple frequency band features into a single feature vector. This strategy is incapable of utilizing the complementary and consistent information of each frequency band effectively. It does not always achieve the satisfactory results. To obtain the sparse and consistent representation of the multi-frequency band EEG signals for emotion classification, this paper propose a multi-frequent band collaborative classification method based on optimal projection and shared dictionary learning (called MBCC). The joint learning model of dictionary learning and subspace learning is introduced in this method. MBCC maps multi-frequent band data into the subspaces of the same dimension using projection matrices, which are composed of a common shared component and a band-specific component. This projection method can not only make full use of the relevant information across multiple frequency bands, but it can also maintain consistency across each frequency band. Based on dictionary learning, the subspace learns the correlation between frequency bands using Fisher criterion and principal component analysis (PCA)-like regularization term, resulting in a strong discriminative model. The objective function of MBCC is solved by an iterative optimization algorithm. Experiment results on public datasets SEED and DEAP verify the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.