Fig. 1. Overview of our method's stages: a) Cutgraph on a surface, consisting of handle loops, connectors, and one additional path. b) Conformal parametrization which maps the cutgraph's branches to axis-aligned straight segments in the parametric domain. This map is only rotationally seamless. c) This map modified to be fully seamless by map padding; notice that this map, though locally highly distorted, is actually seamless across the red cutgraph. d) The final map optimized for low isometric distortion, starting from the valid map in (c). Zoom-ins that more clearly expose the effect of padding are shown in Figure 2.Seamless global parametrization of surfaces is a key operation in geometry processing, e.g. for high-quality quad mesh generation. A common approach is to prescribe the parametric domain structure, in particular the locations of parametrization singularities (cones), and solve a non-convex optimization problem minimizing a distortion measure, with local injectivity imposed through either constraints or barrier terms. In both cases, an initial valid parametrization is essential to serve as feasible starting point for obtaining an optimized solution. While convexified versions of the constraints eliminate this initialization requirement, they narrow the range of solutions, causing some problem instances that actually do have a solution to become infeasible.We demonstrate that for arbitrary given sets of topologically admissible parametric cones with prescribed curvature, a global seamless parametrization always exists (with the exception of one well-known case). Importantly, our proof is constructive and directly leads to a general algorithm for computing such parametrizations. Most distinctively, this algorithm is bootstrapped with a convex optimization problem (solving for a conformal map), in tandem with a simple linear equation system (determining a seamless modification of this map). This initial map can then serve as valid starting point and be optimized with respect to application specific distortion measures using existing injectivity preserving methods.
The problem of seamless parametrization of surfaces is of interest in the context of structured quadrilateral mesh generation and spline‐based surface approximation. It has been tackled by a variety of approaches, commonly relying on continuous numerical optimization to ultimately obtain suitable parameter domains. We present a general combinatorial seamless parameter domain construction, free from the potential numerical issues inherent to continuous optimization techniques in practice. The domains are constructed as abstract polygonal complexes which can be embedded in a discrete planar grid space, as unions of unit squares. We ensure that the domain structure matches any prescribed parametrization singularities (cones) and satisfies seamlessness conditions. Surfaces of arbitrary genus are supported. Once a domain suitable for a given surface is constructed, a seamless and locally injective parametrization over this domain can be obtained using existing planar disk mapping techniques, making recourse to Tutte's classical embedding theorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.