The free vibration control differential equation of shallow spherical shell on two-parameter foundation is a four order differential equation. Using the intermediate variable, the four order differential equation is reduced to two lower order differential equations. The first lower order differential equation is a Helmholtz equation. A new method of two-dimensional Helmholtz operator is proposed as shown in the paper in which the Bessel function included in Helmholtz equation needs to be treated appropriately to eliminate singularity. The first lower order differential equation is transformed into the integral equation using the proposed method in the paper. The second lower order differential equation which is a Laplace equation is transformed into the integral equation by existing methods. Then the two integral equations are discretized according to the middle rectangle formula, and the corresponding solutions can be obtained by MATLAB programming. In this paper, the R-function theory is used to select the appropriate boundary equation to eliminate the singularity. Based on the properties of Rfunction, the combined method of Helmholtz equation and Laplace equation can solve the free vibration problem of irregular shallow spherical shell on two-parameter foundation. Five examples are given to verify the feasibility of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.