Drug combinations targeting multiple targets/pathways are believed to be able to reduce drug resistance. Computational models are essential for novel drug combination discovery. In this study, we proposed a new simplified deep learning model, DeepSignalingSynergy, for drug combination prediction. Compared with existing models that use a large number of chemical-structure and genomics features in densely connected layers, we built the model on a small set of cancer signaling pathways, which can mimic the integration of multi-omics data and drug target/mechanism in a more biological meaningful and explainable manner. The evaluation results of the model using the NCI ALMANAC drug combination screening data indicated the feasibility of drug combination prediction using a small set of signaling pathways. Interestingly, the model analysis suggested the importance of heterogeneity of the 46 signaling pathways, which indicates that some new signaling pathways should be targeted to discover novel synergistic drug combinations.
Background Survival analysis is an important part of cancer studies. In addition to the existing Cox proportional hazards model, deep learning models have recently been proposed in survival prediction, which directly integrates multi-omics data of a large number of genes using the fully connected dense deep neural network layers, which are hard to interpret. On the other hand, cancer signaling pathways are important and interpretable concepts that define the signaling cascades regulating cancer development and drug resistance. Thus, it is important to investigate potential associations between patient survival and individual signaling pathways, which can help domain experts to understand deep learning models making specific predictions. Results In this exploratory study, we proposed to investigate the relevance and influence of a set of core cancer signaling pathways in the survival analysis of cancer patients. Specifically, we built a simplified and partially biologically meaningful deep neural network, DeepSigSurvNet, for survival prediction. In the model, the gene expression and copy number data of 1967 genes from 46 major signaling pathways were integrated in the model. We applied the model to four types of cancer and investigated the influence of the 46 signaling pathways in the cancers. Interestingly, the interpretable analysis identified the distinct patterns of these signaling pathways, which are helpful in understanding the relevance of signaling pathways in terms of their application to the prediction of cancer patients’ survival time. These highly relevant signaling pathways, when combined with other essential signaling pathways inhibitors, can be novel targets for drug and drug combination prediction to improve cancer patients’ survival time. Conclusion The proposed DeepSigSurvNet model can facilitate the understanding of the implications of signaling pathways on cancer patients’ survival by integrating multi-omics data and clinical factors.
Mortality remains an exceptional burden of extremely preterm birth. Current clinical mortality prediction scores are calculated using a few static variable measurements, such as gestational age, birth weight, temperature, and blood pressure at admission. While these models do provide some insight, numerical and time-series vital sign data are also available for preterm babies admitted to the NICU and may provide greater insight into outcomes. Computational models that predict the mortality risk of preterm birth in the NICU by integrating vital sign data and static clinical variables in real time may be clinically helpful and potentially superior to static prediction models. However, there is a lack of established computational models for this specific task. In this study, we developed a novel deep learning model, DeepPBSMonitor (Deep Preterm Birth Survival Risk Monitor), to predict the mortality risk of preterm infants during initial NICU hospitalization. The proposed deep learning model can effectively integrate time-series vital sign data and fixed variables while resolving the influence of noise and imbalanced data. The proposed model was evaluated and compared with other approaches using data from 285 infants. Results showed that the DeepPBSMonitor model outperforms other approaches, with an accuracy, recall, and AUC score of 0.888, 0.780, and 0.897, respectively. In conclusion, the proposed model has demonstrated efficacy in predicting the real-time mortality risk of preterm infants in initial NICU hospitalization.
Survival analysis and prediction are important in cancer studies. In addition to the Cox proportional hazards model, recently deep learning models have been proposed to integrate the multi-omics data for survival prediction. Cancer signaling pathways are important and interpretable concepts that define the signaling cascades regulating cancer development and drug resistance. Thus, it is interesting and important to investigate the relevance to patients' survival of individual signaling pathways. In this exploratory study, we propose to investigate the relevance and difference of a small set of core cancer signaling pathways in the survival analysis of cancer patients. Specifically, we built a biologically meaningful and simplified deep neural network, DeepSigSurvNet, for survival prediction. In the model, the gene expression and copy number data of 1648 genes from 46 major signaling pathways are used. We applied the model on 4 types of cancer and investigated the relevance and difference of the 46 signaling pathways among the 4 types of cancer. Interestingly, the interpretable analysis identified the distinct patterns of these signaling pathways, which are helpful to understand the relevance of the signaling pathways in terms of their association with cancer survival time. These highly relevant signaling pathways can be novel targets, combined with other essential signaling pathways inhibitors, for drug and drug combination prediction to improve cancer patients' survival time.
Uncovering signaling links or cascades among proteins that potentially regulate tumor development and drug response is one of the most critical and challenging tasks in cancer molecular biology. Inhibition of the targets on the core signaling cascades can be effective as novel cancer treatment regimens. However, signaling cascades inference remains an open problem, and there is a lack of effective computational models. The widely used gene co-expression network (no-direct signaling cascades) and shortest-path based protein-protein interaction (PPI) network analysis (with too many interactions, and did not consider the sparsity of signaling cascades) were not specifically designed to predict the direct and sparse signaling cascades. To resolve the challenges, we proposed a novel deep learning model, deepSignalingLinkNet, to predict signaling cascades by integrating transcriptomics data and copy number data of a large set of cancer samples with the protein-protein interactions (PPIs) via a novel deep graph neural network model. Different from the existing models, the proposed deep learning model was trained using the curated KEGG signaling pathways to identify the informative omics and PPI topology features in the data-driven manner to predict the potential signaling cascades. The validation results indicated the feasibility of signaling cascade prediction using the proposed deep learning models. Moreover, the trained model can potentially predict the signaling cascades among the new proteins by transferring the learned patterns on the curated signaling pathways. The code was available at: https://github.com/fuhaililab/deepSignalingPathwayPrediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.