Background The emerging health technologies and digital services provide effective ways of collecting health information and gathering patient-generated health data (PGHD), which provide a more holistic view of a patient’s health and quality of life over time, increase visibility into a patient’s adherence to a treatment plan or study protocol, and enable timely intervention before a costly care episode. Objective Through a national cross-sectional survey in the United States, we aimed to describe and compare the characteristics of populations with and without mental health issues (depression or anxiety disorders), including physical health, sleep, and alcohol use. We also examined the patterns of social networking service use, PGHD, and attitudes toward health information sharing and activities among the participants, which provided nationally representative estimates. Methods We drew data from the 2019 Health Information National Trends Survey of the National Cancer Institute. The participants were divided into 2 groups according to mental health status. Then, we described and compared the characteristics of the social determinants of health, health status, sleeping and drinking behaviors, and patterns of social networking service use and health information data sharing between the 2 groups. Multivariable logistic regression models were applied to assess the predictors of mental health. All the analyses were weighted to provide nationally representative estimates. Results Participants with mental health issues were significantly more likely to be younger, White, female, and lower-income; have a history of chronic diseases; and be less capable of taking care of their own health. Regarding behavioral health, they slept <6 hours on average, had worse sleep quality, and consumed more alcohol. In addition, they were more likely to visit and share health information on social networking sites, write online diary blogs, participate in online forums or support groups, and watch health-related videos. Conclusions This study illustrates that individuals with mental health issues have inequitable social determinants of health, poor physical health, and poor behavioral health. However, they are more likely to use social networking platforms and services, share their health information, and actively engage with PGHD. Leveraging these digital technologies and services could be beneficial for developing tailored and effective strategies for self-monitoring and self-management.
Objective To develop and apply a natural language processing (NLP)-based approach to analyze public sentiments on social media and their geographic pattern in the United States toward coronavirus disease 2019 (COVID-19) vaccination. We also aim to provide insights to facilitate the understanding of the public attitudes and concerns regarding COVID-19 vaccination. Methods We collected Tweet posts by the residents in the United States after the dissemination of the COVID-19 vaccine. We performed sentiment analysis based on the Bidirectional Encoder Representations from Transformers (BERT) and qualitative content analysis. Time series models were leveraged to describe sentiment trends. Key topics were analyzed longitudinally and geospatially. Results A total of 3 198 686 Tweets related to COVID-19 vaccination were extracted from January 2021 to February 2022. 2 358 783 Tweets were identified to contain clear opinions, among which 824 755 (35.0%) expressed negative opinions towards vaccination while 1 534 028 (65.0%) demonstrated positive opinions. The accuracy of the BERT model was 79.67%. The key hashtag-based topics include Pfizer, breaking, wearamask, and smartnews. The sentiment towards vaccination across the states showed manifest variability. Key barriers to vaccination include mistrust, hesitancy, safety concern, misinformation, and inequity. Conclusion We found that opinions toward the COVID-19 vaccination varied across different places and over time. This study demonstrates the potential of an analytical pipeline, which integrates NLP-enabled modeling, time series, and geospatial analyses of social media data. Such analyses could enable real-time assessment, at scale, of public confidence and trust in COVID-19 vaccination, help address the concerns of vaccine skeptics, and provide support for developing tailored policies and communication strategies to maximize uptake.
ObjectiveTo develop and apply a natural language processing (NLP) – based approach to analyze public sentiments on social media and their geographic pattern in the United States toward COVID-19 vaccination. We also provide insights to facilitate the understanding of the public attitudes and concerns regarding COVID-19 vaccination.MethodsWe collected Tweet posts by the residents in the United States after the official dissemination of the COVID-19 vaccine. We performed sentiment analysis based on the Bidirectional Encoder Representations from Transformers (BERT) and qualitative content analysis. Time series models were leveraged to describe sentiment trends. Key topics were analyzed longitudinally and geospatially.ResultsA total of 3,198,686 Tweets related to COVID-19 vaccination were extracted from January 2021 to February 2022. 2,358,783 Tweets were identified to contain clear opinions, among which 824,755 (35.0%) expressed negative opinions towards vaccination while 1,534,028 (65.0%) demonstrated positive opinions. The accuracy of the BERT model was 79.67%. The key hashtag-based topics include Pfizer, breaking, wearamask, and smartnews. The sentiment towards vaccination across the states showed manifest variability. Key barriers to vaccination include mistrust, hesitancy, safety concern, misinformation, and inequity.ConclusionWe found that opinions toward the COVID-19 vaccination varied across different places and over time. This study demonstrates the potential of an analytical pipeline, which integrates NLP-enabled modeling, time series, and geospatial analyses of social media data. Such analyses could enable real-time assessment, at scale, of public confidence and trust in COVID-19 vaccination, help address the concerns of vaccine skeptics, and provide support for developing tailored policies and communication strategies to maximize uptake.
Social network data often contain missing values because of the sensitive nature of the information collected and the dependency among the network actors. As a response, network imputation methods including simple ones constructed from network structural characteristics and more complicated model-based ones have been developed. Although past studies have explored the influence of missing data on social networks and the effectiveness of imputation procedures in many missing data conditions, the current study aims to evaluate a more extensive set of eight network imputation techniques (i.e., null-tie, Reconstruction, Preferential Attachment, Constrained Random Dot Product Graph, Multiple Imputation by Bayesian Exponential Random Graph Models or BERGMs, k-Nearest Neighbors, Random Forest, and Multiple Imputation by Chained Equations) under more practical conditions through comprehensive simulation. A factorial design for missing data conditions is adopted with factors including missing data types, missing data mechanisms, and missing data proportions, which are applied to generated social networks with varying numbers of actors based on 4 different sets of coefficients in ERGMs. Results show that the effectiveness of imputation methods differs by missing data types, missing data mechanisms, the evaluation criteria used, and the complexity of the social networks. More complex methods such as the BERGMs have consistently good performances in recovering missing edges that should have been present. While simpler methods like Reconstruction work better in recovering network statistics when the missing proportion of present edges is low, the BERGMs work better when more present edges are missing. The BERGMs also work well in recovering ERGM coefficients when the networks are complex and the missing data type is actor non-response. In conclusion, researchers analyzing social networks with incomplete data should identify the network structures of interest and the potential missing data types before selecting appropriate imputation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.