Micro-scale patterned arrays and nano-scale rough morphology are promising for improving the light-extraction performance of GaN-based thin film light-emitting diodes (TFLEDs), while the lightextraction mechanisms of the multiscale architectures combining these two structures have not been investigated yet. In this report, we have adopted a pattern transfer and wet etching combined method to fabricate multiscale patterned arrays with rough morphology (msPARM) on n-GaN layers for TFLEDs and investigated their light-extraction mechanisms by the finite-difference time domain and ray-tracing combined method. The results show that the TFLEDs achieve the maximum radiant efficacy using the msPARM with an etching time of 8 min, which is increased by 16.3% and 1.7% compared with that achieved using only the patterned arrays or only the rough morphology, respectively. Most importantly, optical simulation reveals that the msPARM can provide a high transmittance for light with large emission angles from the active region using the inclined surface of micro-scale concave cones, while effectively suppressing the reflection loss for light with small emission angles using the scattering effect of nano-scale rough morphology, resulting in enhancing the light-extraction of the TFLEDs. Consequently, this study can provide a better understanding to design the multiscale structures for achieving high efficiency LEDs.INDEX TERMS GaN-based thin-film light-emitting diodes, light extraction, finite-difference time domain, ray-tracing, multiscale structure.
I. INTRODUCTIONLight-emitting diodes (LEDs) led to a revolution in lighting and have gradually replaced conventional solid-state lighting sources because of their high brightness and long lifetime [1]. GaN-based thin-film LEDs (TFLEDs) hold promise as a high-power and high-quality lighting source because of their high light extraction, good heat dissipation, and flexible chip size [1]-[3]. The radiant efficacy is one of the most essential performance indicators for TFLEDs applications [4], defined as the ratio of radiant power to the injected electrical power. This performance is contributed by the internal quantum efficiency (IQE) and light-extraction efficiency (LEE).The associate editor coordinating the review of this manuscript and approving it for publication was Jiang Wu.
China is experiencing substantial land-use and land-cover change (LUCC), especially in coastal regions, and these changes have caused many ecological problems. This study selected a typical region of Jiangsu Province and completed a comprehensive and detailed spatial-temporal analysis regarding LUCC and the driving forces. The results show that the rate of land-use change has been accelerating, with land-use experiencing the most substantial changes from 2005 to 2010 for most land-use types and the period from 2010 to 2015 showing a reversed changing trend. Built-up land that occupies cropland was the main characteristic of land-use type change. Southern Jiangsu and the coastline region presented more obvious land-use changes. Social-economic development was the main factor driving increased built-up land expansion and cropland reduction. In addition, land-use policy can significantly affect land-use type changes. For land-cover changes, the normalized difference vegetation index (NDVI) for the land area without land-use type changes increased by 0.005 per year overall. Areas with increasing trends accounted for 82.43% of the total area. Both precipitation and temperature displayed more areas that were positively correlated with NDVI, especially for temperature. Temperature correlated more strongly with NDVI change than precipitation for most vegetation types. Our study can be used as a reference for land-use managers to ensure sustainable and ecological land-use and coastal management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.