Aim
To explore the effects of Radix Sophorae Flavescentis carbonisata-based carbon dots (RSFC-CDs) on an ethanol-induced acute gastric ulcer rat model.
Methods
The structure, optical properties, functional groups and elemental composition of RSFC-CDs synthesized by one-step pyrolysis were characterized. The gastric protective effects of RSFC-CDs were evaluated and confirmed by applying a rat model of ethanol-induced acute gastric ulcers. The underlying mechanisms were investigated through the nuclear factor-kappa B (NF-κB) signalling pathway and oxidative stress.
Results
RSFC-CDs with a diameter ranging from 2–3 nm mainly showed gastric protective effects by reducing the levels of NF-κB, tumour necrosis factor-α (TNF-α), interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione (GSH), malondialdehyde (MDA) and inducible nitric oxide synthase (iNOS) to inhibit ethanol-induced inflammation and oxidative stress.
Conclusion
RSFC-CDs have anti-inflammatory and anti-oxidative effects, making them promising for application in ethanol-induced gastric injury.
Introduction: A correlation is established between the efficacy of Chinese herbal medicine and its charcoal drugs. Lonicerae japonicae Flos (LJF) is commonly used to treat fever, carbuncle, and tumors, among others. LJF Carbonisatas (LJFC) is preferred for detoxifying and relieving dysentery and its related symptoms. However, the mechanisms underlying the effects of LJFC remain unknown. Aim: The aim of this study was to explore the effects of LJFC-derived carbon dots (LJFC-CDs) on lipopolysaccharide (LPS)-induced fever and hypothermia rat models. Methods: LJFC-CDs were characterized using transmission electron microscopy, highresolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. The anti-inflammatory effects of LJFC-CDs were evaluated and confirmed using rat models of LPS-induced fever or hypothermia. Results: The LJFC-CDs ranged from 1.0 to 10.0 nm in diameter, with a yield of 0.5%. LJFC-CDs alleviated LPS-induced inflammation, as demonstrated by the expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 and the recovery of normal body temperature. Conclusion: LJFC-CDs may have an anti-inflammatory effect and a potential to alleviate fever and hypothermia caused by inflammation.
Aim: To evaluate the gastroprotective effects of Nelumbinis Rhizomatis Nodus carbon dots (NRN-CDs) on ethanol-induced gastric ulcers in rats. Materials & methods: NRN-CDs synthesized and characterized by transmission electron microscopy, ultraviolet, fluorescence and Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and zeta potential analyzer. Their gastroprotective effects toward ethanol-induced gastric ulcers were evaluated in male Sprague–Dawley rats. Results: NRN-CDs showed an average diameter of 2.33 ± 0.42 nm and a lattice spacing of 0.29 nm. Pretreatment with NRN-CDs significantly decreased the ulcer index and attenuated the severity of gastric mucosal damage, indicating that NRN-CDs exerted potent gastric protective effect. Moreover, the gastroprotection effect was related to the regulation of oxidative stress and inflammatory factors. Conclusion: NRN-CDs could be developed as a potential drug for the treatment of gastric ulcers.
BackgroundGastric ulcers is a common gastrointestinal digestive system disease. Considering the frequency of human gastric ulcers, the side effects and cost of some existing synthetic drugs, the use of natural products is an important choice for many people. The aim of present study was to explore gastroprotective effects of nelumbinis rhizomatis nodus carbonisata carbon dots (NRNC-CDs) on ethanol-induced gastric ulcers in rats.MethodsThe NRNC-CDs were synthesized via high temperature calcinations treatment at 350 ℃ for 1 h were characterized by various spectroscopic and electron microscopy techniques for their structural, morphological, and optical properties. In vitro cytotoxicity of CDs for the human gastric epithelial cells line (GES-1 cells) was assessed by the CCK-8 assay. Furthermore, the study evaluated gastroprotective effects of NRNC-CDs on ethanol-induced gastric ulcers in rats, followed by a preliminary study on the possible mechanisms of gastroprotection.ResultesNRNC-CDs with a quantum yield of 1.38% have an average diameter of 2.89±0.82nm and the lattice spacing of 0.29 nm , and exerted low toxicity to GES-1 cells by CCK-8 test. In vivo experiments showed that NRNC-CDs remarkably reduced gastric mucosal damage and significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione peroxidase (GSH-Px). In addition, NRNC-CDs also significantly inhibited tumor necrosis factor-alpha (TNF-a) and pro-inflammatory interleukin-6 (IL-6) level in gastric tissues. Histological findings demonstrated that NRNC-CDs exhibited a protective effect against tissue alterations in response to the ethanol-induced ulcer.ConclussionThe potent gastroprotective effect of NRNC-CDs were thus attributed to its anti-inflammatory and antioxidant effects. This discovery provides guidance for further research the effect of CDs in gastrointestinal digestive diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.