Electron and hole transport layers have critical impacts on the overall performance of perovskite solar cells (PSCs). Herein, for the first time, a solution-processed cobalt (Co)-doped NiO film was fabricated as the hole transport layer in inverted planar PSCs, and the solar cells exhibit 18.6% power conversion efficiency. It has been found that an appropriate Co-doping can significantly adjust the work function and enhance electrical conductivity of the NiO film. Capacitance-voltage ( C- V) spectra and time-resolved photoluminescence spectra indicate clearly that the charge accumulation becomes more pronounced in the Co-doped NiO -based photovoltaic devices; it, as a consequence, prevents the nonradiative recombination at the interface between the Co-doped NiO and the photoactive perovskite layers. Moreover, field-dependent photoluminescence measurements indicate that Co-doped NiO -based devices can also effectively inhibit the radiative recombination process in the perovskite layer and finally facilitate the generation of photocurrent. Our work indicates that Co-doped NiO film is an excellent candidate for high-performance inverted planar PSCs.
In this article, two different types of spacer cations, 1,4‐butanediamonium (BDA2+) and 2‐phenylethylammonium (PEA+) are co‐used to prepare the perovskite precursor solutions with the formula of (BDA)1‐a(PEA2)aMA4Pb5X16. By simply mixing the two spacer cations, the self‐assembled polycrystalline films of (BDA)0.8(PEA2)0.2MA4Pb5X16 are obtained, and BDA2+ is located in the crystal grains and PEA+ is distributed on the surface. The films display a small exciton binding energy, uniformly distributed quantum wells and improved carrier transport. Besides, utilizing mixed spacer cations also induces better crystallinity and vertical orientation of 2D perovskite (BDA)0.8(PEA2)0.2MA4Pb5X16 films. Thus, a power conversion efficiency (PCE) of 17.21% is achieved in the optimized perovskite solar cells with the device structure of ITO/PEDOT:PSS/Perovskite/PCBM/BCP/Ag. In addition, the complementary humidity and thermal stability are obtained, which are ascribed to the enhanced interlayer interaction by BDA2+ and improved moisture resistance by the hydrophobic group of PEA+. The encapsulated devices are retained over 95% or 75% of the initial efficiency after storing 500 h in ambient air under 40 ± 5% relative humidity or 100 h in nitrogen at 60 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.